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Supplemental appendixes to Breen and Ermisch, The Effects of Social Mobility 

 

Appendix A:  The dependence of “mobility effects” estimates on the coding scheme 

 

Luo (2022) presents an approach to the definition and estimation of mobility effects based on 

the SAM (as shown in our equation 1).  Luo defines mobility effects, which we label 𝑐𝑐𝑗𝑗𝑗𝑗, as 

𝑐𝑐𝑗𝑗𝑗𝑗 = 𝛾𝛾𝑗𝑗𝑗𝑗 − 𝛾𝛾𝑗𝑗𝑗𝑗: that is, 𝑐𝑐𝑗𝑗𝑗𝑗 is the difference between the interaction parameters for a cell 

representing mobility from a given origin (where 𝑘𝑘 ≠ 𝑗𝑗) and that for the cell representing 

immobility for the same origin.  The problem of the lack of identification of the full set of 

interactions is addressed by the use of effect coding which constrains the interactions to sum 

to zero across rows and columns as shown below for the 3 by 3 case.  But this means that Luo’s 

mobility effects, 𝑐𝑐𝑗𝑗𝑗𝑗 depend on the coding scheme chosen.  

 

Table A1: Constraints with effect coding 
 

𝛾𝛾11 𝛾𝛾12 𝛾𝛾13 = −(𝛾𝛾11 + 𝛾𝛾12) 
𝛾𝛾21 𝛾𝛾22 𝛾𝛾23 = −(𝛾𝛾21 + 𝛾𝛾22) 

𝛾𝛾31 = −(𝛾𝛾11 + 𝛾𝛾21) 𝛾𝛾32 = −(𝛾𝛾12 + 𝛾𝛾11)  𝛾𝛾33 = −(𝛾𝛾13 + 𝛾𝛾23) =
−(𝛾𝛾31 + 𝛾𝛾32) 

  

Effect coding is simply a way of constraining the interaction terms and it inevitably leads to 

constraints on the mobility effects.  For example, for the 3 by 3 case we have  

 

𝑐𝑐13 + 𝑐𝑐23 = 𝑐𝑐21 + 𝑐𝑐31 = 𝑐𝑐12 + 𝑐𝑐32 

  

It is not clear why the mobility effects from origins 1 and 2 should be constrained by mobility 

effects from origin 3. 
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Calculation of 𝛾𝛾𝑖𝑖𝑖𝑖 and 𝑐𝑐𝑗𝑗𝑗𝑗 from table of means 

Effect coding 

The effect coding scheme leads to simple expressions for the estimates of 𝛾𝛾𝑖𝑖𝑖𝑖 (𝛾𝛾�𝑖𝑖𝑖𝑖) in terms of 

the means in the data.  Define 𝜇𝜇𝑖𝑖𝑖𝑖 as the deviation of the mean of cell i,j from the overall mean 

(𝜇𝜇), and, for our 3x3 example, define 𝜇𝜇𝑖𝑖∙ = ∑ 𝜇𝜇𝑖𝑖𝑖𝑖
3

3
𝑗𝑗=1  as the column mean (net of the grand 

mean) and 𝜇𝜇∙𝑗𝑗 = ∑ 𝜇𝜇𝑖𝑖𝑖𝑖
3

3
𝑖𝑖=1  as the row mean (net of the grand mean), noting that  

∑ 𝜇𝜇𝑖𝑖∙ = ∑ 𝜇𝜇∙𝑗𝑗 = 03
𝑗𝑗=1

3
𝑖𝑖=1 . 

 

Then 𝛼𝛼�1 = 𝜇𝜇1∙, 𝛼𝛼�2 = 𝜇𝜇2∙, 𝛽̂𝛽1 = 𝜇𝜇∙1, 𝛽̂𝛽2 = 𝜇𝜇∙2, and 

𝛾𝛾�11  = 𝜇𝜇11 − 𝛼𝛼�1 − 𝛽̂𝛽1 (= 𝜇𝜇11 − 𝜇𝜇1∙ − 𝜇𝜇∙1) 

𝛾𝛾�12  = 𝜇𝜇12 − 𝛼𝛼�1 − 𝛽̂𝛽2 (= 𝜇𝜇12 − 𝜇𝜇1∙ − 𝜇𝜇∙2)  

𝛾𝛾�21  = 𝜇𝜇21 − 𝛼𝛼�2 − 𝛽̂𝛽1 (= 𝜇𝜇21 − 𝜇𝜇2∙ − 𝜇𝜇∙1)  

𝛾𝛾�22  = 𝜇𝜇22 − 𝛼𝛼�2 − 𝛽̂𝛽2 (= 𝜇𝜇22 − 𝜇𝜇2∙ − 𝜇𝜇∙2)   

 

The remaining 𝛾𝛾�𝑖𝑖𝑖𝑖 can be derived from these estimates by the adding-up constraints (e.g. 

𝛾𝛾�31 = −(𝛾𝛾�11 + 𝛾𝛾�21 ).  

 

The estimated mobility contrasts 𝑐̂𝑐𝑗𝑗𝑗𝑗 = 𝛾𝛾�𝑖𝑖𝑖𝑖 − 𝛾𝛾�𝑖𝑖𝑖𝑖  are derived from the 𝛾𝛾�𝑖𝑖𝑖𝑖.  For example, 

𝑐̂𝑐12 = 𝜇𝜇12 − 𝜇𝜇11 + 𝛽̂𝛽1 − 𝛽̂𝛽2  (= 𝜇𝜇12 − 𝜇𝜇11 + 𝜇𝜇∙1 − 𝜇𝜇∙2) 

𝑐̂𝑐21 = 𝜇𝜇21 − 𝜇𝜇22 + 𝛽̂𝛽2 − 𝛽̂𝛽1 (= 𝜇𝜇21 − 𝜇𝜇22 + 𝜇𝜇∙2 − 𝜇𝜇∙1)  

𝑐̂𝑐13 = 𝜇𝜇13 − 𝜇𝜇11 + 𝛽̂𝛽1 − 𝛽̂𝛽3 (= 𝜇𝜇∙2 + 2𝜇𝜇∙1 + 3𝜇𝜇1∙ − 2𝜇𝜇11 − 𝜇𝜇12) 
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Dummy variable coding 

Suppose that we constrain 𝛼𝛼2 = 𝛽𝛽2 = 𝛾𝛾12 = 𝛾𝛾21 = 𝛾𝛾23 = 𝛾𝛾32 = 𝛾𝛾22 = 0.  Define 𝑚𝑚𝑖𝑖𝑖𝑖 as the 

deviation of the mean of cell I,j from the mean of cell 2,2.   

 

Then 𝛼𝛼�1 = 𝑚𝑚12, 𝛼𝛼�3 = 𝑚𝑚32, 𝛽̂𝛽1 = 𝑚𝑚21, 𝛽̂𝛽3 = 𝑚𝑚23, and 

𝛾𝛾�11  = 𝑚𝑚11 − 𝛼𝛼�1 − 𝛽̂𝛽1 (= 𝑚𝑚11 − 𝑚𝑚12 − 𝑚𝑚21) 

𝛾𝛾�13  = 𝑚𝑚13 − 𝛼𝛼�1 − 𝛽̂𝛽3 (= 𝑚𝑚13 − 𝑚𝑚12 − 𝑚𝑚23) 

𝛾𝛾�31  = 𝑚𝑚31 − 𝛼𝛼�3 − 𝛽̂𝛽1 (= 𝑚𝑚31 −  𝑚𝑚32 − 𝑚𝑚21)  

𝛾𝛾�33  = 𝑚𝑚33 − 𝛼𝛼�3 − 𝛽̂𝛽3 (= 𝑚𝑚33 − 𝑚𝑚32 − 𝑚𝑚23). 

 

The estimated mobility contrasts 𝑐̂𝑐𝑗𝑗𝑗𝑗 = 𝛾𝛾�𝑖𝑖𝑖𝑖 − 𝛾𝛾�𝑖𝑖𝑖𝑖  are: 

𝑐̂𝑐13 = 𝑚𝑚13 − 𝑚𝑚11 + 𝛽̂𝛽1 − 𝛽̂𝛽3 (= 𝑚𝑚13 − 𝑚𝑚11 + 𝑚𝑚21 − 𝑚𝑚23)  

𝑐̂𝑐31 = 𝑚𝑚31 − 𝑚𝑚33 + 𝛽̂𝛽3 − 𝛽̂𝛽1 (= 𝑚𝑚31 − 𝑚𝑚33 + 𝑚𝑚23 − 𝑚𝑚21  

𝑐̂𝑐32 = −𝛾𝛾�33   

𝑐̂𝑐12 = −𝛾𝛾�11  and 𝑐̂𝑐21 = 0 = 𝑐̂𝑐32. 

 

Under the approach we present in this paper, the es�mated causal effect of moving from origin 

i to des�na�on j is 𝛽̂𝛽𝑗𝑗 −  𝛽̂𝛽𝑖𝑖 + 𝑐̂𝑐𝑖𝑖𝑖𝑖 .  When origins and des�na�ons are randomly assigned this 

can be es�mated by ordinary least squares. Substituting from above, the causal effect is 𝑚𝑚𝑖𝑖𝑖𝑖 −

𝑚𝑚𝑖𝑖𝑖𝑖 with dummy variable coding and 𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖 with effect coding but 𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖 

because both are just differences in the cell means of I,j  and i,i.  In other words, the different 
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coding schemes produce different values of 𝛽̂𝛽𝑗𝑗 −  𝛽̂𝛽𝑖𝑖 and therefore of 𝑐̂𝑐𝑖𝑖𝑖𝑖, but not different 

es�mates of causal effects of moving from origin i to des�na�on j.   

 

Example  

To illustrate the impact of the different coding schemes on estimates of 𝑐̂𝑐𝑖𝑖𝑖𝑖 , data on family size 

and social class from Berent (1952) was used: these data were also employed by Duncan (1966) 

in his seminal ar�cle.  We have combined the top two social classes in Berent’s scheme into 

class 1 with classes 2 and 3 being the same as Berent’s.  The data are shown in Table A2.  

Downward mobility occurs above the diagonal and upward mobility below it. Upward mobility 

results in lower fer�lity, and downward higher fer�lity.  Mobility contrast es�mates under the 

two coding schemes are shown in Table A3 and the underlying parameter es�mates in Table 

A4.   

 

Table A2: Average Family size and social class 
 

Father/Son 1 2 3 
1 (top) 2.01 2.44 2.83 

2 2.13 2.67 3.69 
3 1.98 3.22 3.68 

  
Table A3: Mobility contrast es�mates under the two coding schemes 
 

 Effect  Dummy  
𝑐̂𝑐12 -0.31 -0.12 
𝑐̂𝑐13 -0.54 -0.74 
𝑐̂𝑐21 0.19 0 
𝑐̂𝑐23 0.39 0 
𝑐̂𝑐31 -0.34 -0.13 
𝑐̂𝑐32 0.17 0.56 

 
Although the mobility contrasts are in the same direction in the two coding schemes they differ 

substantially in magnitude in some cases, and hypothesis tests on individual contrasts may 
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produce different results in smaller samples. In terms of substantive findings, if we were to 

interpret the contrasts as ‘mobility effects’, fertility is lower for the downwardly mobile from 

class 1 and the upwardly mobile from class 3 to 1, but higher for the upwardly mobile from 

class 3 to 2. These ‘mobility effects’ clash with the causal mobility effects in two of these three 

instances: fertility is higher for the downwardly mobile from class 1 to 3 and lower for the 

upwardly mobile from class 3 to 2. 

 

Table A4: Parameter es�mates under the two coding schemes 
 

 Effect  Dummy  
𝜇̂𝜇 2.74 2.67 
𝛽̂𝛽1 -0.70 -0.54 
𝛽̂𝛽2 0.04 0 
𝛽̂𝛽3 0.66 1.02 
𝛼𝛼�1 -0.31 -0.23 
𝛼𝛼�2 0.09 0 
𝛼𝛼�3 0.22 0.55 
𝛾𝛾�11  0.28 0.12 
𝛾𝛾�12  -0.03 0 
𝛾𝛾�13  -0.26 -0.62 
𝛾𝛾�21  0.00 0 
𝛾𝛾�22  -0.20 0 
𝛾𝛾�23  0.20 0 
𝛾𝛾�31  -0.28 -0.69 
𝛾𝛾�32  0.22 0 
𝛾𝛾�33  0.06 -0.56 
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Appendix B: Estimates under Conditional Independence Assumption 

In order for propensity score weighting or matching to produce a consistent estimate of the 

average causal effect of social mobility from origin j to destination k on those moving to 

destination k, 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑗 = 𝐸𝐸 (𝑌𝑌𝑖𝑖(𝑘𝑘) − 𝑌𝑌𝑖𝑖(𝑗𝑗)|𝑂𝑂 = 𝑗𝑗,𝐷𝐷 = 𝑘𝑘), we need a Conditional Independence 

Assumption (CIA) analogous to the Propensity Score Theorem  (Angrist and Pischke 2009: 80).  

For those from origin j, let  𝑝𝑝𝑗𝑗𝑗𝑗(𝑋𝑋𝑖𝑖) be the probability that 𝐷𝐷𝑖𝑖 = 𝑘𝑘  which is the probability of 

mobility from j to k.  Then the CIA theorem states that if 𝑌𝑌𝑖𝑖(𝐷𝐷) is orthogonal to 𝐷𝐷𝑖𝑖  given X, then 

𝑌𝑌𝑖𝑖(𝐷𝐷) is also orthogonal to 𝐷𝐷𝑖𝑖  given 𝑝𝑝𝑗𝑗𝑗𝑗(𝑋𝑋𝑖𝑖).  The theorem holds for the unknown true 

propensity score: 1 what follows depends on how well we can estimate it.  

 

Define 𝐼𝐼𝑖𝑖 = 1 for 𝐷𝐷𝑖𝑖 = 𝑘𝑘 and 𝐼𝐼𝑖𝑖 = 0 for 𝐷𝐷𝑖𝑖 = 𝑗𝑗. Then 𝑝𝑝𝑗𝑗𝑗𝑗(𝑋𝑋𝑖𝑖) = 𝐸𝐸(𝐼𝐼𝑖𝑖|𝑂𝑂 = 𝑗𝑗,𝐷𝐷𝑖𝑖 = 𝑘𝑘,𝑋𝑋𝑖𝑖) and 

the inverse propensity score weighted estimate of 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑗 is 

 

(1/𝑁𝑁)�
𝑌𝑌𝑖𝑖𝐼𝐼𝑖𝑖

𝑝𝑝𝑗𝑗𝑗𝑗(𝑋𝑋𝑖𝑖) 

𝑁𝑁

𝑖𝑖=1
−

(1 − 𝐼𝐼𝑖𝑖)𝑌𝑌𝑖𝑖
(1 − 𝑝𝑝𝑗𝑗𝑗𝑗(𝑋𝑋𝑖𝑖))

 

 

where N  is the sample size, which could be restricted to observations with common support.  

This estimator for destination k and origin j replaces the 𝜑𝜑𝑗𝑗𝑗𝑗 parameters in equations (7) for 

𝑘𝑘 ≠ 𝑗𝑗 and from these we can derive 𝜑𝜑𝑗𝑗0, from which we can compute the SAM parameters, as 

discussed in the paper after equations (7) and (8). 

 

 
1 Although the CIA holds for the true propensity score in the population, the propensity score is unknown to the 
analyst who must estimate it using sample data.  If the estimated propensity score is a consistent estimator of the 
true score then conditional independence will hold in expectation, just as, with randomization, the treatment 
variable will be orthogonal to unobserved confounders in expectation. 
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In section 5 of the paper, the estimate of the probability of mobility of each type and of 

immobility is derived from a multinomial logit model to predict destination, conditional on 

origin j, from which we obtain estimates of the probability that the destination is k, 𝑃𝑃�𝑗𝑗𝑗𝑗, k=1,2,3. 

Thus, the estimate of the propensity score for movement from origin j to destination k is 

𝑝̂𝑝𝑗𝑗𝑗𝑗(𝑋𝑋𝑖𝑖) = 
𝑃𝑃�𝑗𝑗𝑗𝑗

𝑃𝑃�𝑗𝑗𝑗𝑗+𝑃𝑃�𝑗𝑗𝑗𝑗
|𝑋𝑋𝑖𝑖 , 𝑗𝑗 ≠ 𝑘𝑘.   
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