
Citation: Fosse, Ethan. 2023.
“Dissecting the Lexis Table:
Summarizing Population-Level
Temporal Variability with
Age–Period–Cohort Data.”
Sociological Science 10:
150-196.
Received: April 7, 2022
Accepted: May 9, 2022
Published: March 13, 2023
Editor(s): Arnout van de Rijt,
Richard Breen
DOI: 10.15195/v10.a5
Copyright: © 2023 The Au-
thor(s). This open-access article
has been published under a Cre-
ative Commons Attribution Li-
cense, which allows unrestricted
use, distribution and reproduc-
tion, in any form, as long as the
original author and source have
been credited.cb

Dissecting the Lexis Table: Summarizing Population-
Level Temporal Variability with Age–Period–Cohort
Data
Ethan Fosse

University of Toronto

Abstract: Since Norman Ryder’s (1965) classic essay on cohort analysis was published more than a
half century ago, scores of researchers have attempted to uncover the separate effects of age, period,
and cohort (APC) on a wide range of outcomes. However, rather than disentangling period effects
from those attributable to age or cohort, Ryder’s approach is based on distinguishing intra-cohort
trends (or life-cycle change) from inter-cohort trends (or social change), which, together, constitute
comparative cohort careers. Following Ryder’s insights, in this article I show how to formally
summarize population-level temporal variability on the Lexis table. In doing so, I present a number
of parametric expressions representing intra- and inter-cohort trends, intra-period differences, and
Ryderian comparative cohort careers. To aid the interpretation of results, I additionally introduce a
suite of novel visualizations of these model-based summaries, including 2D and 3D Lexis heat maps.
Crucially, the Ryderian approach developed in this article is fully identified, complementing (but not
replacing) conventional approaches that rely on theoretical assumptions to parse out unique APC
effects from unidentified models. This has the potential to provide a common base of knowledge in
a literature often fraught with controversy. To illustrate, I analyze trends in social trust in the U.S.
General Social Survey from 1972 to 2018.
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FOR at least a century, social scientists in a wide range of fields have sought to
understand social change using age–period–cohort (APC) analysis. As it is

conventionally understood, the objective of an APC analysis is to use time-series
cross-sectional data to identify the distinct contributions of age, period (or survey
year), and cohort (or birth year) on some outcome of interest.1 Although the cohort
concept has ancient roots,2 Ryder’s (1965) classic essay on the relationship between
the cohort concept and social change inaugurated the modern era of APC analysis
in sociology and demography.

Drawing from earlier work by historians and demographers, Ryder (1965) out-
lined two main aspects of what he labeled “the cohort approach” (P. 549): first, the
study of intra-cohort trends, or “intra-cohort temporal development”; second, the
examination of inter-cohort trends, or “intercohort temporal differentiation” (P. 861).
Because they involve comparisons within cohorts as they age through time (i.e.,
across periods), intra-cohort trends represents life-cycle change; by contrast, because
they entail comparisons of successive cohorts through time (i.e., across periods),
inter-cohort trends represent social change.3 Together, intra- and inter-cohort trends,
or, equivalently, life-cycle and social change, constitute what Ryder (1965) famously
called “comparative cohort careers,” or cohort-specific age–time trajectories (P. 861).
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In short, then, Ryder’s cohort approach is essentially the depiction of life-cycle and
social change, with cohort as a general unifying, analytic concept (see also Ryder
1968, 1992).

Ryder’s essay is now considered a citation classic in sociology and demography,
and his insights have inspired generations of researchers to take up APC analysis,
including many of the leading figures of quantitative sociology (Alwin 1991; Alwin
and McCammon 2003; Clogg 1982; Clogg and Shockey 1985; Duncan 1985; Duncan
and Stenbeck 1988; Fienberg and Mason 1979; Firebaugh 1989, 1990, 2008; Glenn
1977, 2005; Knoke and Hout 1974; Mason et al. 1973; Mason and Fienberg 1985;
Reither et al. 2009; Rodgers 1982, 1990; Yang and Land 2013). Yet, despite significant
methodological innovations, considerable controversy remains on how to obtain
meaningful results from APC data. This is in part because Ryder, quite uncharacter-
istically given his foundational contributions to mathematical demography (1964;
1980; 1983), provided virtually no technical details on how to actually conduct a
cohort analysis. As Hardy and Wilson (2002) rightly observed, “while Ryder’s clas-
sic essay developing the connection between cohort succession and social change
was extremely influential, it contained few specifics on the techniques of research”
(P. 243).4

Progress has furthermore been hampered by a number of conceptual and
methodological issues with APC data, most notably the deterministic relation-
ship among the temporal variables. Simply put, period is the sum of age and cohort.
As a consequence, in what is known as the APC identification problem, there is
simply not enough information to determine the unique contributions of each vari-
able on any given outcome. Conventional regression analysis cannot be used to
estimate the parameters; instead, one must incorporate additional information into
the model by, for example, fixing one of the coefficients to zero, applying parametric
constraints, or specifying informative prior distributions over one or more of the
parameters. There are now, decades after Ryder’s classic essay was first published,
a dizzying array of methods available to researchers wishing to extract unique
effects from APC data, including Moore–Penrose estimators, structural equation
models, time-series approaches, ridge and lasso regressions, multilevel models, and
Bayesian regressions, among many other techniques.5

Although much has been written on various methods for identifying unique
temporal effects in light of the identification problem, Ryder, in fact, advocated for
a different strategy. Instead of disentangling period effects from those attributable
to age or cohort,6 Ryder’s cohort approach is based on distinguishing intra-cohort
trends (or life-cycle change) from inter-cohort trends (or social change), which,
together, compose Ryderian comparative cohort careers. In other words, as Glenn
(1976) correctly recognized, “a complete disentangling” of age, period, and cohort
“is not necessary” to understand social change, and “it is this use of cohort analysis
which Ryder (1965) recommends in his classic essay” (P. 903).7 To underscore this
critical point, I will refer to an APC analysis as any approach that attempts to derive
unique “effects” for age, period, and cohort (e.g., Fosse and Winship 2019b; Mason
et al. 1973; Mason and Fienberg 1985), whereas cohort analysis will refer to any
approach that attempts to describe intra- and inter-cohort trends, or life-cycle and
social change (e.g., Ryder 1965, 1968).
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In this article, I show formally how the classic APC model can be used in line
with Ryder’s vision for cohort analysis, enabling researchers to parsimoniously
summarize population-level temporal variability on the Lexis table in terms of
intra- and inter-cohort trends (or life-cycle and social change), as well as Ryderian
comparative cohort careers.8 Additionally, although such an analysis is not a core
part of Ryder’s cohort approach, I reveal how one can adapt the classic APC model
to formally summarize intra-period differences. Crucially, the overall framework
developed in this article is based on fully identified models, complementing (but
not replacing) conventional approaches that rely on assumptions, ideally informed
by theory, to parse out unique APC “effects” (e.g., Fosse and Winship 2019a,b). As
such, this has the potential to provide a common base of knowledge in a literature
often fraught with controversy. Due to space limitations, I focus on interpreting
the classic APC model, which is by far the most commonly used in the literature.
However, as discussed below, the general principles outlined in this article can be
applied to any number of other APC models.

The rest of this article is organized as follows. First, I outline the basic contours
of Ryder’s vision for analyzing cohorts and clarify the differences among intra-
cohort, inter-cohort, and intra-period comparisons. Second, I demonstrate how
the conventional APC model can be deployed for the purpose of summarizing
population-level temporal variability, outlining three different models: diachronic,
age synchronic, and cohort synchronic. I also discuss how these models are related
to each other, revealing under what conditions the two synchronic models provide
estimates identical to the diachronic model. Next, to illustrate how the classic APC
model can be used for a Ryderian analysis, I examine trends in social trust in the
United States using data from the U.S. General Social Survey (GSS). Then, drawing
from Ryder’s cohort approach, I discuss four main types of summaries from the
diachronic and synchronic APC models: intra-cohort trends, inter-cohort trends,
Ryderian comparative cohort careers, and intra-period differences. I also introduce
a number of novel visualizations of these model-based summaries, including two-
dimensional heat maps and three-dimensional Lexis surfaces. Additionally I discuss
related model-based approaches in the sociological literature, including analyses of
nonlinearities (Acosta and van Raalte 2019), an approach outlined by Duncan (1981),
and a technique put forth by Firebaugh (1989, 1990, 1997, 2008). These methods can,
in some sense, be interpreted as special cases of the Ryderian approach outlined in
this article. Finally, I sketch possible extensions and future directions for research,
as well as the limitations of the methods outlined in this article.

Diachronic Trends and Synchronic Differences

Consider first, for ease of exposition, a simple slopes-only APC model (cf. Mason
et al. 1973:243). Let Y denote a continuous outcome, A age in years, P period (or
survey year), and C cohort (or birth year). The basic slopes-only APC model can be
represented by9

Y = µ + αA + πP + γC + ϵ, (1)
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where µ is the intercept; α, π, and γ are the age, period, and cohort slopes; and ϵ

is an error term. Typically the goal in APC analysis is to understand the separate
contributions of age, period, and cohort for a particular outcome (e.g., Mason
et al. 1973). As is well known, however, the coefficients in Equation (1) cannot be
estimated due to a linear dependency among the time scales, such that p = a + c.
Accordingly, researchers must apply some information external to the data to
identify unique temporal effects (e.g., Fosse and Winship 2019b).

Yet, as noted in the introduction, Ryder’s cohort approach is based not on
disentangling period effects from those effects attributable to age or cohort, but
rather on distinguishing intra-cohort trends (or life-cycle change) from inter-cohort
trends (or social change). The key insight is that, from a Ryderian perspective, the
relationship of age and cohort to calendar time (i.e., period) is either diachronic (from
Greek “dia-” meaning “through” and “khronos” meaning “time”) or synchronic
(from Greek “syn-” meaning “together” and “khronos” meaning “time”).10 In other
words, observationally, we can compare age or cohort through calendar time (i.e.,
diachronically), resulting in dynamic trends, or within a particular cross-section
of calendar time (i.e., synchronically), thereby generating static differences. For a
similar point, see Riley (1973).

Perhaps unsurprisingly, synchronic comparisons are not a core feature of Ryder’s
cohort approach, which is instead based on diachronic comparisons. As Ryder
(1965) declared in no uncertain terms, an analysis based on synchronic measures
“destroys individual sequences,” “inhibits dynamic inquiry,” “diverts attention from
process,” and “fosters the illusion of immutable structure” (P. 859). Fortunately,
as Ryder correctly recognized, inasmuch it is based on diachronic rather than
synchronic comparisons, these problems “can be avoided by using the cohort
approach” (P. 859).

The basic slopes-only APC model of Equation (1) can be easily altered for
estimating diachronic trends in line with Ryder’s vision for cohort analysis. The key
idea is to re-index the parameters with respect to A and C, as suggested by Ryder
(1968). This is accomplished by substituting P with A + C into Equation (1) and
rearranging terms, resulting in the diachronic slopes-only model:

Y = µ + θ1 A + θ2C + ϵ, (2)

where µ is the intercept, θ1 = α + π, θ2 = γ + π, and ϵ is an error term. Note
that Equation (2) is fully identified and hence estimable. Despite its simplicity,
Equation (2) is crucial for understanding the relationship between APC models and
Ryder’s cohort approach.

To clarify the interpretation of Equation (2) as well as its relevance for cohort
analysis, Table 1 summarizes θ1 and θ2 as well as the two logically possible differ-
ences, θ1 − θ2 and θ2 − θ1. As shown in the first row of Table 1, the first parameter
is θ1 = α + π, the diachronic inter-age slope or, for short, the diachronic age slope.
The diachronic age slope reflects an intra-cohort trend because we are observing how,
within cohorts, populations of individuals are aging through calendar time (i.e.,
across periods). Using Ryder’s (1965) terminology, θ1 is a measure of “intra-cohort
temporal development throughout the life-cycle” (P. 861), or, simply, life-cycle
change.
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Table 1: Overview of diachronic and synchronic slope estimands

Slope Relation Within-group Between-group Ryderian
estimand to calendar time comparisons comparisons interpretation

θ1 = α + π Diachronic Intra-cohort Inter-age Life-cycle




Comparative
cohort career

trend trend change

θ2 = γ + π Diachronic Intra-age Inter-cohort Social
trend trend change

θ1 − θ2 = α − γ Synchronic Intra-period Inter-age
differences differences

θ2 − θ1 = γ − α Synchronic Intra-period Inter-cohort
differences differences

Notes: The diachronic age slope, which represents an intra-cohort trend, is θ1 = α + π, where α is the age
slope and π is the period slope. The diachronic cohort slope, which represents an inter-cohort trend, is
θ2 = γ + π, where α is the age slope and π is the period slope. The synchronic age and cohort slopes,
which represent intra-period differences, are given by θ1 = θ2 = α − γ and θ2 − θ1 = γ − α, respectively.
Highlighted cells indicate “Ryderian” terminology for characterizing comparisons across levels of APC data.

The second parameter, as shown in the second row of Table 1, is θ2 = γ + π, the
diachronic inter-cohort slope or, for short, the diachronic cohort slope. The diachronic
cohort slope reflects an inter-cohort trend because we are comparing successive
cohorts through calendar time (i.e., across periods). In Ryder’s (1965) phraseology,
θ2 is a measure of “inter-cohort temporal differentiation” (P. 861), or, equivalently,
social change. Combined, as shown in the last column of Table 1, intra-cohort and
inter-cohort trends (or life-cycle and social change) constitute Ryderian comparative
cohort careers.

The bottom rows of Table 1 outline the interpretation of the two logically possible
differences between θ1 and θ2. As displayed in the third row of Table 1, θ2 − θ1 =

γ − α defines the synchronic inter-age slope or, for short, the synchronic age slope.
Similarly, the difference θ1 − θ2 = α − γ defines the synchronic inter-cohort slope or,
for short, the synchronic cohort slope. Rather than dynamic trends, the synchronic age
and cohort slopes reflect static intra-period differences.11 Intuitively this is because
these slopes are based on comparisons within cross-sections of time (i.e., within
periods).

The synchronic age and cohort slopes can be calculated as the difference between
the diachronic age and cohort slopes estimated in Equation (2). Alternatively, they
can be estimated directly by re-indexing Equation (1) with respect either to A and P
or to C and P, respectively. Specifically, re-indexing Equation (1) with respect to A
and P (by substituting C with P − A and rearranging terms) gives the age synchronic
slopes-only model:

Y = µ + A(θ1 − θ2) + Pθ2 + ϵ. (3)
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Similarly, re-indexing Equation (1) with respect to P and C (by substituting A with
P − C and rearranging terms) results in the cohort synchronic slopes-only model:

Y = µ + Pθ1 + C(θ2 − θ1) + ϵ. (4)

The age synchronic slopes-only model (Eq. [3]) generates estimates of the age
synchronic slope and the diachronic cohort slope, whereas the cohort synchronic
slopes-only model (Eq. [4]) provides estimates of the diachronic age slope and the
cohort synchronic slope. Intuitively, both models provide cross-sectional estimates
for age and cohort, respectively, because they condition on calendar time (or period).

To provide additional insight on the interpretation of the slope parameters in
Table 1, Figure 1 shows an age–period Lexis heat map based on simulated data.
Each cell of Figure 1 displays the mean of the outcome based on values of θ1 = 0.08
and θ2 = 0.10, with selected age (row), period (column), and cohort (diagonal)
groups highlighted for the purposes of exposition. The three highlighted sections
illustrate the various ways in which the underlying linear trends of a Lexis table
can be dissected. First, the diagonal section in Figure 1 identifies those individuals
born in 1920.12 Because cohorts have been constructed based on age and period,
we only observe this cohort for a section of its entire life-cycle, from age 50 in 1970
to age 60 in 1980. As this cohort ages through time, the outcome shifts across both
age (rows) and period (columns) groups. In other words, comparisons within this
section reflect an intra-cohort trend (i.e., the diachronic age slope). Accordingly,
tracing from the upper left to lower right, the difference between adjacent cells,
which are five years apart, is equal to 0.08 × 5 = 0.40, where θ1 = α + π = 0.08. For
example, at age 50 in period 1970 the expected mean outcome is −1.50, whereas at
age 55 in period 1975 it is −1.10, an increase of 0.40.

Second, the horizontal section in Figure 1 subsets to those individuals aged 30
years. As we compare successive cohorts through time, the outcome shifts across
both cohort (diagonals) and period (columns) groups. That is, comparisons within
this section reflect an inter-cohort trend (i.e., diachronic cohort slope). Following
from left to right, the difference between adjacent cells, which are again five years
apart, equals 0.10 × 5 = 0.40, where θ2 = γ + π = 0.10. For instance, for the cohort
born in 1940 and observed in 1970, the expected mean outcome is −1.10, whereas
for the cohort born in 1945 and observed in 1975 the expected mean outcome is
−0.60, an increase of 0.50.

Lastly, the vertical section in Figure 1 identifies those individuals observed in
the period 1990. As we compare adjacent cells within this vertical section, the
outcome shifts across both age (rows) and cohort (diagonals) groups. Specifically,
comparing age groups from young to old (i.e., low to high age levels) also necessarily
entails comparing cohort groups from recent to old (i.e., high to low cohort levels).
Because these comparisons occur within a cross-section, they reflect static intra-
period differences (i.e., synchronic age or cohort slopes) rather than dynamic trends.
Following from top to bottom (i.e., low to high age levels), the difference between
adjacent cells, which again are five years apart, is −0.02 × 5 = −0.10, where
θ1 − θ2 = −0.02. By contrast, following from bottom to top (i.e., low to high cohort
levels), the difference between adjacent cells, which are again five years apart, is
0.02 × 5 = 0.10, where θ2 − θ1 = 0.02. For instance, for those aged 15 years and
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Figure 1: Two-dimensional age–period–cohort Lexis heat map of diachronic trends and synchronic differences.
Notes: Each cell gives the mean outcome based on simulated data using values of θ1 = 0.08 and θ2 = 0.10.
Three sections are highlighted: the diachronic intra-cohort trend for the birth cohort born in 1920 (diagonal
section), the diachronic inter-cohort trend for those aged 30 years (horizontal section), and intra-period
differences for those in the 1990 period (vertical section).

born in 1990 the expected mean outcome is 1.20, whereas for those aged 20 years
and born in 1990 the expected mean outcome is 1.10. Comparing the 15-year-old
age group with the 20-year-old age group in 1990 (and thus the 1975 cohort with
the 1970 cohort), this difference is a decrease of 0.10. Conversely, comparing the
1970 cohort with the 1975 cohort in 1990 (and thus the 20-year-old age group with
the 15-year-old age group), this difference is an increase of 0.10.

In short, instead of the separate linear effects for age, period, and cohort, the
building blocks of a Ryderian analysis are the diachronic age and cohort slopes, de-
noted by θ1 and θ2. These two parameters represent intra- and inter-cohort trends,
respectively. By contrast, their cross-sectional counterparts, the synchronic age
slope θ1 − θ2 and the synchronic cohort slope θ2 − θ1, represent intra-period differ-
ences, which, as noted above, are not a core part of Ryder’s cohort approach. The
diachronic age slope and cohort slopes correspond to comparisons within diagonal
and horizontal sections, respectively, of an age–period Lexis table, whereas syn-
chronic age and cohort slopes correspond to comparisons within vertical sections.
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Diachronic and Synchronic Temporal Models

So far the discussion has focused on interpreting the linear trends underlying a
set of APC data. In practice, APC researchers typically fit a more flexible model
than one with just age, period, and cohort linear components. In this section I first
introduce three main diachronic and synchronic APC models, showing how they
are related to each other, and then apply these models to the empirical example, an
examination of temporal trends in social trust in the U.S. GSS. I focus on interpreting
the conventional APC model because it is by far the model most commonly used in
the literature. However, the general principles of a Ryderian analysis outlined in
the previous section could be applied to any number of parametric models used by
APC analysts.

Classical and Linearized APC Models

Suppose we have categorically coded age, period, and cohort data for a set of n
respondents.13 We let i = 1, . . . , I denote the age groups, j = 1, . . . , J the period
groups, and k = 1, . . . , K the cohort groups with k = j − i + I and K = I + J − 1.14

The classical APC (C-APC) model is (Fosse and Winship 2019a)

Yijk = µ + αi + πj + γk + ϵijk, (5)

where µ is the overall mean; αi, πj, and γk are age, period, and cohort parameters;
and ϵ is an error term. To identify the levels of the parameters given the inclusion
of the intercept, sum-to-zero constraints are applied to the parameters: ∑I

i=1 αi =

∑J
j=1 πj = ∑K

k=1 γk = 0. However, because of the linear dependency among the
time scales, the C-APC model is still not identified even after assuming sum-to-zero
constraints (e.g., see Mason and Fienberg 1985; Yang and Land 2013).

An alternative representation of the C-APC model orthogonally decomposes
the linear from the nonlinear components. We can accordingly specify the linearized
APC (L-APC) model with the form (Fosse and Winship 2018)

Yijk = µ + α(i − i∗) + π(j − j∗) + γ(k − k∗) + α̃i + π̃j + γ̃k + ϵijk, (6)

where the asterisks denote midpoint or referent indices i∗ = (I + 1)/2, j∗ = (J +
1)/2, and k∗ = (K + 1)/2; α, π, and γ are the slopes for age, period, and cohort; α̃,
π̃, and γ̃ represent age, period, and cohort nonlinearities; and again ϵijk is an error
term.

Note that the C-APC and L-APC models are equivalent representations of
temporal data grouped by age, period, and cohort. As with the C-APC model, each
cell in an age–period array is modeled by a unique combination of parameters.
For example, the ith age parameter in the C-APC model is represented in the L-
APC model by the overall age slope along with a unique parameter for the ith
age nonlinearity: αi = (i − i∗)α + α̃i. In other words, each age parameter αi is
decomposed into the sum of a common parameter α representing the age slope
for the entire array, with a value shifting across rows (or age categories) as a
function of the age index i, and a unique parameter α̃i, which is a nonlinearity
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specific to each row (or age category). We can similarly decompose each of the
period and cohort parameters in the C-APC model into linear and nonlinear terms.
Like the C-APC model, the L-APC model also cannot be identified due to the
linear dependency among the time scales. Because they are simply alternative
representations of the same underlying model, I will refer to the C-APC and L-
APC models interchangeably as the “classical,” “classic,” or “conventional” APC
model.15

The Diachronic L-APC Model and Synchronic Alternatives

As noted previously, the great majority of work in APC analysis has focused on
developing techniques for identifying unique APC effects. However, as with the
basic slopes-only APC model, one can use the conventional APC model to estimate
diachronic trends in line with Ryder’s cohort approach. The idea, as before, is to
re-index the C-APC model with respect to age and cohort by substituting period
with age and cohort.16 After rearranging terms, this results in the diachronic L-APC
model:

Yijk = µ + θ1(i − i∗) + θ2(k − k∗) + α̃i + π̃i+k−I + γ̃k + ϵi[i+k−I]k, (7)

where θ1 = α + π is the diachronic age slope and θ2 = γ + π is the diachronic
cohort slope. The diachronic L-APC model is fully identified (i.e., the design matrix
is of full rank) and thus can be estimated using APC data.

As with the basic slopes-only APC model discussed in the previous section, one
can also estimate the two synchronic variants of the L-APC model. First, re-indexing
the L-APC model with respect to age and period results in the age synchronic L-APC
model:

Yijk = µ + (θ1 − θ2)(i − i∗) + θ2(j − j∗) + α̃i + π̃j + γ̃j−i+I + ϵij[j−i+I], (8)

where θ1 − θ2 = α − γ is the synchronic age slope and θ2 = γ + π is again the
diachronic cohort slope, but indexed by period (j = 1, . . . , j = J) rather than cohort
(k = 1, . . . , k = K). Second, re-indexing the L-APC model with respect to period
and cohort results in the cohort synchronic L-APC model:

Yijk = µ + θ1(j − j∗) + (θ2 − θ1)(k − k∗) + α̃j−k+(K−J+1)

+ π̃j + γ̃k + ϵ[j−k+(K−J+1)]jk,
(9)

where θ2 − θ1 = γ − α is the synchronic cohort slope and θ1 = α + π is again
the diachronic age slope, but indexed by period (j = 1, . . . , j = J) rather than
age (i = 1, . . . , i = I). As with their slopes-only counterparts discussed in the
previous section (Eqs. [3] and [4]), the age synchronic L-APC model (Eq. [8]) and
the cohort synchronic L-APC model (Eq. [9]) provide synchronic estimates for age
and cohort, respectively, because both models involve conditioning on the period
linear component.

For the purposes of summarizing APC data within a Ryderian framework, the
diachronic L-APC model is generally preferred over the age and cohort synchronic
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Table 2: Relationships among diachronic and synchronic slopes

Diachronic age slope: If θ1 = 0, then θ2 − θ1 = θ2
If θ1 > 0, then θ2 − θ1 < θ2
If θ1 < 0, then θ2 − θ1 > θ2

Diachronic cohort slope: If θ2 = 0, then θ1 − θ2 = θ1
If θ2 > 0, then θ1 − θ2 < θ1
If θ2 < 0, then θ1 − θ2 > θ1

Synchronic age slope: If θ1 − θ2 = 0, then θ1 = θ2
If θ1 − θ2 > 0, then θ1 > θ2
If θ1 − θ2 < 0, then θ1 < θ2

Synchronic cohort slope: If θ2 − θ1 = 0, then θ2 = θ1
If θ2 − θ1 > 0, then θ2 > θ1
If θ2 − θ1 < 0, then θ2 < θ1

Notes: θ1 = α + π and θ2 = γ + π.

L-APC models. The reason is that, although all three models provide identical
estimates of the age, period, and cohort nonlinearities as well as the intercept, the
age and cohort slopes of the the two synchronic models will not reflect intra- and
inter-cohort trends (i.e., life-cycle and social change) except under very strong as-
sumptions on the absence of a linear trend across or within cohorts.17 To understand
why this is the case, consider Table 2, which outlines the relationships among the
diachronic and synchronic slopes and, accordingly, the three L-APC models defined
in Equations (7), (8), and (9).

The top panel in Table 2 shows how, for different values of the diachronic age
slope, the synchronic and diachronic cohort slopes are systematically related. As
shown in the first line of the top panel, the synchronic cohort slope will equal
the diachronic cohort slope only if the diachronic age slope is zero. Under this
condition, the cohort slope in Equation (9) will be an unbiased estimate for the
cohort slope in Equation (7). Otherwise, as shown in the second and third lines
of the top panel, if the diachronic age slope is greater (or less) than zero, then the
synchronic cohort slope will be less (or greater) than the diachronic cohort slope,
and accordingly the cohort slope in Equation (9) will provide an underestimate (or
overestimate) of the cohort slope in Equation (7).

The middle panel in Table 2 reveals the relations the relationships between the
synchronic and diachronic age slopes for different values of the diachronic cohort
slope. As indicated in the first line of the middle panel, if the diachronic cohort
slope is zero, then the synchronic age slope will equal the diachronic age slope.
Under this scenario, the age slope in Equation (8) will be an unbiased estimate of
the age slope in Equation (7). By contrast, as shown in the second and third lines
of the middle panel, if the diachronic cohort slope is greater (or less) than zero,
then the synchronic age slope will be less (or greater) than the diachronic age slope,
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and accordingly the age slope in Equation (8) will provide an underestimate (or
overestimate) of the age slope in Equation (7).

The bottom panel in Table 2 shows the relationships between the diachronic
slopes for different values of the synchronic slopes. As shown in the first and fourth
lines of the bottom panel, if the synchronic age (or cohort) slope is zero, then the
diachronic age and cohort slopes are the same. Otherwise, if the synchronic age
slope is negative (or, equivalently, the synchronic cohort slope is positive), then
the diachronic age slope is less than the diachronic cohort slope in Equation (7).
By contrast, if the synchronic age slope is positive (or, equivalently, the synchronic
cohort slope is negative), then the diachronic age slope is greater than the diachronic
cohort slope in Equation (7).

Two main conclusions follow from the relationships in Table 2. First, for the
purposes of a Ryderian cohort analysis, in general the diachronic L-APC model
is preferred over the age or cohort synchronic L-APC models. The reason is that,
except under very strong (and often testable) assumptions, the age and cohort slopes
of the synchronic L-APC models represent static (cross-sectional) comparisons, not
dynamic trends.18 The age synchronic slope will be an unbiased estimate of the
diachronic age slope only if there is no linear inter-cohort trend or social change;
likewise, the cohort synchronic slope will be an unbiased estimate of the diachronic
cohort slope if there is no linear intra-cohort trend or life-cycle change. Although it
will naturally depend on the particular application, these conditions seem unlikely
to hold in most cases.

Second, the age and cohort synchronic L-APC models, although not providing
direct estimates of intra- and inter-cohort trends, respectively, are, in fact, informa-
tive about the relative magnitude of intra- versus inter-cohort trends (i.e., life-cycle
versus social change). If the synchronic age slope is negative (or, equivalently, the
synchronic cohort slope is positive), then the linear intra-cohort trend is less than
that for the inter-cohort trend; that is, the overall (linear) life-cycle change is less
than that for social change. By contrast, if the synchronic age slope is positive (or,
equivalently, the synchronic cohort slope is negative), then the linear intra-cohort
trend is greater than that for the inter-cohort trend; in other words, the overall
(linear) life-cycle change is greater than that for social change. This topic is explored
later in this article in the discussion of parametric expressions for intra-period
differences (see Eqs. [20] and [21]).

Example: Social Trust in the United States

To illustrate how APC data can be used to summarize population-level temporal
variability in line with Ryder’s vision, I examine trends in social trust using data
from the U.S. GSS. Respondents were asked the following question: “Generally
speaking, would you say that most people can be trusted or that you can’t be too
careful in dealing with people?” The outcome is coded so that 1 = “can trust” while
0 = “can’t be too careful” or “depends.” The sample size is R = 41, 126 respondents,
and all results are adjusted using appropriate sampling weights. There are I = 14
age groups, J = 10 period groups, and K = 23 cohort groups. Age groups were
coded into five-year intervals beginning with 18 to 22 and ending with 83 and older,
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Figure 2: Three-dimensional age–period–cohort Lexis surface. Notes: Each cell gives the predicted probability
of the outcome from a diachronic L-APC logistic regression model. Outcome is social trust, coded so that
1 = “can trust” while 0 = “can’t be too careful” or “depends.” Sample size R = 41, 126 respondents. Results
adjusted using sampling weights.

whereas period groups were coded into five-year intervals beginning with 1970
to 74 and ending with 2015 to 2019. Cohort groups, calculated as the difference
between the period and age groups, began with 1887 to 1891 and ended with 1997
to 2001.

Figure 2 shows a three-dimensional age–period–cohort Lexis surface of the
predicted probability of social trust using the diachronic L-APC model.19 The
predicted probability in each cell is based on a unique combination of age, period,
and cohort values. Results show considerable temporal variability, with the lowest
levels of social trust among young people in more recent cohorts who are also
observed in more recent periods, and higher levels of social trust among middle-
aged people in earlier cohorts who are accordingly observed in earlier periods.

An alternative representation of the surface of predicted probabilities is shown
in Figure 3, which shows a two-dimensional Lexis heat map. This figure highlights
the three main types of descriptive comparisons summarized in the third and fourth
columns of Table 1. First, there is the intra-cohort trend, which is equivalent to
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Figure 3: Two-dimensional Lexis heat map of diachronic trends and synchronic differences, plotting predicted
probabilities from a diachronic L-APC logistic regression model. Notes: Outcome is social trust, coded so
that 1 = “can trust” while 0 = “can’t be too careful” or “depends.” Sample size R = 41, 126 respondents.
Results adjusted using sampling weights. Three sections are highlighted: the diachronic intra-cohort trend
for the 1912-to-1916 birth cohort (diagonal section), the diachronic inter-cohort trend for the 38-to-42 age
group (horizontal section), and intra-period differences for the 2005-to-2009 period group (vertical section).

stratifying by cohort and comparing age groups through time. For example, as
shown by the highlighted diagonal in Figure 3, one can subset to the cohort with a
midpoint birth year of 1912 and compare the probability of social trust among those
individuals aged 58 to 62 years and observed from 1970 to 1974 with that of those
aged 83 and older and observed from 1995 to 1999. Second, there is the inter-cohort
trend, which is equivalent to stratifying by age and comparing cohorts through
time. For instance, as indicated by the highlighted row in Figure 3, one can subset
to those individuals aged 38 to 42 years and compare the probability of social trust
among those individuals with a midpoint birth year of 1932 and observed between
1970 and 1974 with that of those with a midpoint birth year of 1977 and observed
between 2015 and 2019. Finally, there are intra-period differences. This is equivalent
to stratifying by period and comparing age-cum-cohort groups. For example, as
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Table 3: Key parameters from diachronic and synchronic L-APC models

Log-odds ratio Odds ratio

Parameter Coef. Std. error p value Coef. 95% CI

Intercept (µ) −0.558 0.027 <0.001 0.573 (0.542, 0.604)

Diachronic age slope (θ1) −0.192 0.055 0.001 0.826 (0.741, 0.920)

Diachronic cohort slope (θ2) −0.677 0.071 <0.001 0.508 (0.442, 0.584)

Synchronic cohort slope (θ2 − θ1) −0.485 0.066 <0.001 0.615 (0.541, 0.700)

Synchronic age slope (θ1 − θ2) 0.485 0.066 <0.001 1.625 (1.423, 1.848)

Notes: θ1 = α + π, θ2 = γ + π. CI = confidence interval. Estimates based on logistic diachronic and
synchronic L-APC models. Outcome is social trust, coded so that 1 = “can trust” while 0 = “can’t be too
careful” or “depends.” Sample size R = 41, 126 respondents. Results adjusted using sampling weights.

shown by the highlighted column in Figure 3, one can subset to the 2005-to-2010
period and compare the probability of social trust among those individuals aged 18
to 22 years (with a midpoint birth year of 1987) with that of those aged 83 or older
(with a midpoint birth year of 1922). Again, because we are comparing individuals
within a single cross-section, this analysis is static rather than dynamic.

Underlying the patterns in Figure 3 are the diachronic and synchronic slopes
discussed previously, which can be estimated using the diachronic and synchronic
L-APC models shown in Equations (7), (8), and (9). Table 3 shows the estimates for
the intercept as well as various diachronic and synchronic slopes. The diachronic
age slope, which represents an intra-cohort trend, indicates that there is a decline
in social trust as we compare age groups through time (log-odds ratio: −0.192;
p = 0.001). Likewise, the diachronic cohort slope, which represents an inter-
cohort trend, reveals that there is a decline in social trust as we compare cohorts
through time (log-odds ratio: −0.677; p < 0.001). The synchronic cohort slope,
representing intra-period differences, indicates that the difference between the
diachronic cohort and age slopes is large and statistically significant (log-odds ratio:
−0.485; p < 0.001). This is also reflected in the synchronic age slope, which has the
same size but opposite sign as the synchronic cohort slope (log-odds ratio: 0.485;
p < 0.001). In short, the estimated slopes indicate considerable life-cycle and social
change in the data, with a particularly steep decline as we compare cohorts through
time.

Table 4 compares results for the diachronic L-APC model and various submodels.
The first row presents fit statistics for the diachronic L-APC model, which is the
baseline model for the Wald tests. The second and third rows are models that drop
the diachronic age and cohort slopes, respectively. Rows four to six present models
that drop the age, period, and cohort nonlinearities, respectively. The last three rows
of Table 4 present fit statistics for models that drop two of the nonlinearities. Wald
tests indicate that all of the nonlinearities are statistically significant at conventional
levels. Visual inspection of the nonlinearities also reveal notable patterns, especially
for age and cohort (see Figure 3 in the online supplement). The Akaike information
criterion (AIC) and Bayesian information criterion (BIC) both suggest that one
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Table 4: Fit statistics of diachronic L-APC model versus selected submodels

Wald test

APC model LLV AIC BIC χ2 p value

θ1 + θ2 + α̃i + π̃j + γ̃k 53, 117.38 53, 224.11 53, 584.85 Baseline model

θ2 + α̃i + π̃j + γ̃k 53, 131.07 53, 235.51 53, 586.44 12.09 <0.001

θ1 + α̃i + π̃j + γ̃k 53, 184.20 53, 291.28 53, 664.97 90.74 <0.001

θ1 + θ2 + π̃j + γ̃k 53, 235.62 53, 313.29 53, 553.67 94.17 <0.001

θ1 + θ2 + α̃i + γ̃k 53, 167.29 53, 253.88 53, 540.97 39.29 <0.001

θ1 + θ2 + α̃i + π̃j 53, 286.66 53, 341.18 53, 508.23 142.26 <0.001

θ1 + θ2 + α̃i 53, 329.00 53, 363.26 53, 457.75 174.95 <0.001

θ1 + θ2 + π̃j 53, 561.43 53, 586.66 53, 589.56 348.94 <0.001

θ1 + θ2 + γ̃k 53, 289.79 53, 347.32 53, 512.47 136.15 <0.001

Notes: θ1 = α + π and θ2 = γ + π. LLV = log-likelihood value. AIC = Akaike information criterion. BIC =
Bayesian information criterion. Calculations based on a diachronic L-APC logistic regression model and
selected submodels. Outcome is social trust, coded so that 1 = “can trust” while 0 = “can’t be too careful”
or “depends.” Sample size R = 41, 126 respondents. Results adjusted using sampling weights.

should include a model with nonlinearities. AIC suggests that the best-fitting model
includes both diachronic slopes and all of the nonlinearities. As expected, BIC,
which penalizes the inclusion of additional parameters, prefers a more parsimonious
model that includes both slopes but just the age nonlinearities.

Summarizing Population-Level Temporal Variability

As shown in previous section, the conventional APC model can be adapted for
summarizing intra- and inter-cohort trends, or life-cycle and social change. The
next task is to determine what parametric expressions are useful for parsimoniously
summarizing, in line with Ryder’s (1965) goals for cohort analysis, population-level
temporal variability on the Lexis table. Table 5 summarizes the main parametric
expressions that can be estimated using Equations (7), (8), and (9). Following
the general Ryderian framework for cohort analysis outlined in Table 1, these
expressions are categorized into four main types. The top panel of Table 5 lists
expressions for intra-cohort trends (or, equivalently, life-cycle change), the second
panel lists expressions for inter-cohort trends (or, equivalently, social change), the
third panel lists expression for Ryderian comparative cohort careers (which unite
life-cycle with social change), and the last panel displays expressions for intra-
period differences. In general, the expressions within each category are listed in
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Table 5: Summarizing population-level temporal variability with an APC model

Ryderian
terminology Specific summary Parametric expression

Intra-cohort trends
(life-cycle change)





Diachronic age slope θ1(i − i∗) for all i

Diachronic age curve θ1(i − i∗) + α̃i for all i

Age–period Lexis surface θ1(i − i∗) + α̃i + π̃j for combinations of i, j

Local diachronic age curves θ1(i − i∗) + α̃i + π̃i+k−I for all i in each cohort k

Inter-cohort trends
(social change)





Diachronic cohort slope θ2(k − k∗) for all k

Diachronic cohort curve θ2(k − k∗) + γ̃k for all k

Cohort–period Lexis surface θ2(k − k∗) + γ̃k + π̃j for combinations of k, j

Local diachronic cohort curves θ2(k − k∗) + γ̃k + π̃k+i−I for all k in each age i

Ryderian
comparative
cohort careers





Curves-only comparative
cohort careers ϕk + θ1(i − i∗) + α̃i for all i in each cohort k

Adjusted comparative
cohort careers ϕk + π̃i+k−I + θ1(i − i∗) + α̃i for all i in each cohort k

Intra-period
differences





Synchronic age slope (θ1 − θ2)(i − i∗) for all i

Synchronic age curve (θ1 − θ2)(i − i∗) + α̃i for all i

Local synchronic age differences (θ1 − θ2)(i − i∗) + (α̃i − γ̃j−i+I) for all i in each period j

Synchronic cohort slope (θ2 − θ1)(k − k∗) for all k

Synchronic cohort curve (θ2 − θ1)(k − k∗) + γ̃k for all k

Local synchronic cohort differences (θ2 − θ1)(k − k∗) + (γ̃k − α̃j−k+I) for all k in each cohort k

Notes: θ1 = α + π and θ2 = γ + π. The quantity ϕk is equal to θ2(k − k∗) + γ̃k , which is a single value for a given cohort k.

increasing order of complexity in the sense a larger number of terms from the
conventional APC model are included.

The second and third columns of Table 5 list the specific summaries and paramet-
ric expressions that fall under each Ryderian category, whereas the fourth column
lists the dimensions over which the parameters are successively calculated or com-
pared. There are several key points about the terminology used in the second
column, which is more precise than Ryder’s language or that commonly deployed
by researchers. This precision is crucial so as to provide a tighter coupling between
theory and method as well as to avoid fundamental misinterpretations that appear
in the APC literature.20 First, throughout “slopes” refers to estimands based on
only a linear component, whereas “curves” refers to estimands based on linear
as well as nonlinear components. Slopes and curves can be calculated and com-
pared across a single temporal variable. By contrast, “surfaces” are expressions that
entail calculating and comparing two temporal variables simultaneously and are
thus most naturally visualized as two-dimensional heat maps or three-dimensional
surfaces. For instance, the diachronic age slope is based only on θ1, whereas the
diachronic age curve is based on θ1 as well as the set of α̃i’s, or age nonlinearities.
The age–period Lexis surface also includes the set of π̃j’s, introducing another
temporal dimension (i.e., period) to the expression. As discussed previously, the
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terms “diachronic” and “synchronic” refer to whether or not we are comparing
successive parameters using θ1 or θ2, which are diachronic in that they capture age
or cohort differences across periods, or θ2 − θ1 or θ1 − θ2, which are synchronic in
that they reflect static differences within periods.

Second, the expressions in the second column of Table 5 refer to “inter-” group
comparisons, with the particular groups that are successively compared listed
in the last column of Table 5. However, for simplicity the “inter-” prefix has
been omitted from the names of the expressions. The reason for this is that the
diachronic/synchronic distinction is only necessary for differentiating between
inter-group comparisons, not intra-group comparisons.21 Accordingly, by virtue of
employing the adjective “diachronic,” we are, in fact, signaling that an expression
entails “inter-” group comparisons, with parameters successively calculated and
compared across some specified set of groups. Thus, for example, rather than
labeling the expression in the second row of Table 5 the “diachronic inter-age curve,”
we call it the “diachronic age curve” for short. This is an inter-age comparison,
because parameters are calculated and compared across successive age groups, that
is, for all i = 1, . . . , I, as indicated by the phrase “for all i” in the last column of
Table 5.

As well, the second column of Table 5 avoids referring to “intra-” group com-
parisons. The reason for this is that, once nonlinearities are incorporated, referring
to intra-group comparisons is inherently more vague than referring to inter-group
comparisons, whether diachronic or synchronic. To see this, take, for example,
the expression for the diachronic age curve in the second row of Table 5. Within
cohorts there are both age and period parameters that can be calculated and suc-
cessively compared. If we were to call the expression for the diachronic age curve
an intra-cohort curve, it would be unclear whether or not we were calculating and
comparing parameters across age or period (or both), or if age or period nonlineari-
ties (or both) were included. A similar ambiguity would arise if we were to refer
to various other parametric expressions in terms of intra- rather than inter-group
comparisons.

Finally, in Table 5 we have included several additional terms that differentiate
the various expressions, including “local,” “comparative,” “careers,” and “adjusted.”
Local expressions are diachronic age or cohort curves that, by including the period
nonlinearities, are unique to each cohort or age group. The reason is that the period
nonlinearities, which are experienced by different ages for different cohorts, allow
the curves to vary across cohorts. By contrast, comparative expressions are those
that directly include the parameters θ1 and θ2 (not their difference). Note the two
Ryderian comparative cohort career expressions in the third panel of Table 5 include
the diachronic age curve, which is the “career” aspect of these expressions. By
contrast, the “comparative” aspect is given by the quantity ϕk, or θ2(k − k∗) + γ̃k,
which is equal to a single value for a given cohort k. Lastly, “adjusted” refers to
cohort careers incorporating all of the age, period, and cohort nonlinearities in the
diachronic L-APC model, which will generally differ from those calculated using
the raw (or “unadjusted”) summaries in the data.22

Having noted the above, one can view Ryder’s terminology in the first column
of Table 5 as a general cohort-based, descriptive framework for interpreting the esti-
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mates from the classical APC model. Distinguishing between intra- and inter-cohort
trends, and comparing the careers of successive cohorts, is crucial for relating the
conventional APC model to general theories of life-cycle and social change popular
in sociology and demography (e.g., see Elder 1974; Elder and George 2016; Gold-
stone 1991; Inglehart 1990; Mannheim [1927/1928] 1952; Tilly 1984; see also Ryder
1965, 1968, 1992). The more specific terminology in the second column of Table 5,
however, is useful for clarifying the differences among the various kinds of intra-
and inter-cohort trends, comparative cohort careers, and intra-period differences, as
well as to link specific language to the core elements of each parametric expression,
namely, what is calculated, what is compared, and what is conditioned upon. Fol-
lowing this framework, in the subsequent sections I use the data on social trust to
examine the four main kinds of summaries that can be derived from a Lexis table (cf.
the four panels of Table 5): first, intra-cohort trends (i.e., life-cycle change); second,
inter-cohort trends (i.e., social change); third, Ryderian comparative cohort careers,
which combine life-cycle with social change; and, lastly, intra-period differences.
The first three types of summaries constitute the core of Ryder’s cohort approach.
(In Appendix C of the online supplement I also discuss in detail adjusted age,
period, and cohort marginal curves, which condition on all of the nonlinearities
included in the diachronic L-APC model.) I review each of these in turn, presenting
both mathematical formulas and novel visualizations using the data on social trust.

Intra-cohort Trends (Life-Cycle Change)

The top panel of Table 5 lists the set of expressions for describing intra-cohort trends
or, equivalently, life-cycle change. The simplest representation of an intra-cohort
trend is the diachronic age slope, which is given by θ1 = α + π in Equation (7).
However, a more realistic depiction of an intra-cohort trend would incorporate the
age nonlinearities. The diachronic age curve, which adds the age nonlinearities to the
diachronic age slope, is defined as

θ1(i − i∗) + α̃i for i = 1, . . . , I, (10)

which again is an overall measure of how cohorts age through time. Figure 4 shows
the predicted probability of social trust using the diachronic age and cohort curves.
As shown in panel (a), the diachronic age slope indicates that there is a general
decline in the predicted probability of social trust as we compare age groups through
time. This decline in predicted probability reflects the large, negative diachronic
age slope in Table 3 (log-odds ratio: −0.192; p = 0.001). Panel (b), which displays
the diachronic age curve, indicates that the predicted probability of trust increases
in early adulthood and declines in later adulthood, with a peak in middle age.
Together these graphs reveal considerable life-cycle change within cohorts.

So far we have considered only adding the age nonlinearities to the diachronic
age slope, which results in the diachronic age curve. For an even richer depiction of
the trends, one can also incorporate the period nonlinearities. The age–period Lexis
surface, which adds the age nonlinearities to the diachronic age curve, is defined
as23

(
α(i − i∗) + α̃i

)
+

(
π(j − j∗) + π̃j

)
= θ1(i − i∗) + α̃i + π̃j (11)
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Figure 4: Diachronic age slope and curve. Notes: (a) displays the diachronic age slope, whereas (b) displays the
diachronic age curve. Calculations are based on θ1(i − i∗) and θ1(i − i∗) + α̃i, respectively, for i = 1, . . . , I.
Parameter estimates are derived from a diachronic L-APC logistic regression model. Upper and lower
bounds denote 95 percent confidence intervals. Outcome is social trust, coded so that 1 = “can trust” while
0 = “can’t be too careful” or “depends.” Results adjusted using sampling weights.

for all observed combinations of i = 1, . . . , I and j = 1, . . . , J. Equation (11) summa-
rizes a surface that varies across levels of age and period, but not cohort. Accord-
ingly, this surface captures life-cycle change, or, equivalently, a set of intra-cohort
trends. Figure 5 displays two- and three-dimensional representations of the age–
period Lexis surface. The surface in both panels reflects the pattern of the diachronic
age curve in Figure 11(b), with trust peaking in middle adulthood and declining
thereafter. However, there is now additional variability across periods, with lower
levels of trust in particular periods, such as 1975 to 1979 and 1990 to 1994. Despite
this variability, however, it is clear that the diachronic age curve dominates the
patterns in the data.

Some care, however, is required when interpreting the results in Figure 5. The
age–period Lexis surface provides quite different summaries depending on whether
or not one compares predicted probabilities across age groups within periods (i.e.,
columns) or cohorts (i.e., diagonals). Consider first the comparison of probabilities
across successive age groups within each period. Typically comparing age groups
within a period would be highly problematic, because this would imply a set of
static rather than dynamic differences. However, the age–period Lexis surface
shown in Figure 5 is calculated such that the diachronic cohort slope is zero. As
discussed in Appendix A of the online supplement, when the diachronic cohort
slope is zero, the synchronic age slope is identical to the diachronic age slope. Thus,
the probabilities of successive ages within a particular period of the age–period
Lexis surface in Figure 5 are equivalent to those from a diachronic age curve with a
period-specific nonlinearity.24
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Figure 5: Two- and three-dimensional age–period Lexis surfaces. Notes: (a) and (b) display two-dimensional
and three-dimensional Lexis surfaces, respectively, of predicted probabilities of the outcome for all observed
combinations of age and period after adjusting for cohort. Calculations are based on θ1(i − i∗) + α̃i + π̃j for
all observed combinations of i = 1, . . . , I and j = 1, . . . , J. All estimates are derived from a diachronic L-APC
logistic regression model. Outcome is social trust, coded so that 1 = “can trust” while 0 = “can’t be too
careful” or “depends.” Results adjusted using sampling weights.

Besides comparing probabilities across successive age groups within each period,
one can also do so within each cohort. These probabilities are equivalent to those
from local diachronic age curves, which are defined as

θ1(i − i∗) + α̃i + π̃i+k−I for i = 1, . . . , I in each cohort k, (12)

where the period nonlinearities are indexed by both age and cohort. Equation (12)
summarizes life-cycle change, or the intra-cohort trend, for each cohort; it is in
this sense that the curves are “local.” The local diachronic age curves will usually
differ from the overall diachronic age curve, given by Equation (10), in two respects.
First, the period nonlinearities π̃i+k−I , which are indexed by cohort (as well as age),
will usually alter, sometimes quite considerably, the shape of each cohort-specific
diachronic age curve. Second, even in the absence of period nonlinearities, most
cohorts will typically be represented by only a section of the overall diachronic age
curve. The reason is that, assuming the data take the form of an age–period Lexis
table, the number of age groups will vary systematically across cohorts, with the
first and last cohorts consisting of just a single age group.

Figure 6 shows the local diachronic age curves for social trust. Panel (a) displays
a spaghetti plot of local diachronic age curves, whereas panel (b) displays the
local diachronic age curves overlaid with the (overall) diachronic age curve. Only
cohorts with three or more age groups are displayed. To reveal more clearly the
variability of the intra-cohort trends, Figure 7 displays a trellis plot of the local
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Figure 6: Spaghetti plot of local diachronic age curves. Notes: (a) displays a spaghetti plot of local diachronic age
curves. (b) displays local diachronic age curves overlaid with the (overall) diachronic age curve. Calculations
for the local curves are based on θ1(i − i∗) + α̃i + π̃i+k−I for i = 1, . . . , I in each cohort k. Local curves are
shown with dashed lines, whereas the overall curve is shown with a bold solid line. Only cohorts with three
or more age groups are displayed. All estimates are based on a diachronic L-APC logistic regression model.
Outcome is social trust, coded so that 1 = “can trust” while 0 = “can’t be too careful” or “depends.” Results
adjusted using sampling weights.

diachronic age curves for social trust. Each panel displays the (overall) diachronic
age curve overlaid with local diachronic age curves. Note that the local curves
are shown with solid lines, whereas the overall curve is shown with a dashed line.
Again, only cohorts with three or more age groups are displayed. Results show
that cohorts exhibit considerable variation in intra-cohort trends, with some cohorts
experiencing steep declines and others relatively large increases.

As shown in the top panel of Table 5, there are, in short, a number of parametric
expressions for representing intra-cohort trends, or life-cycle change. The diachronic
age slope and curve are parsimonious representations that reflect overall changes as
we compare age groups through time. These entail straightforward visualizations as
line graphs. Incorporating the period nonlinearities, which reflect specific temporal
contexts, requires calculating and visualizing either an age–period Lexis surface or
a set of local diachronic age curves. Both approaches are helpful in revealing the
unique life-cycle changes of particular cohorts.

Inter-cohort Trends (Social Change)

The second panel of Table 5 lists the set of expressions for describing inter-cohort
trends or, equivalently, social change. The simplest representation of an inter-cohort
trend is the diachronic cohort slope, which is denoted by θ2 = γ + π in Equa-
tion (7). Although this expression is appealing in its simplicity, a more informative
characterization of an inter-cohort trend would include the cohort nonlinearities.
The diachronic cohort curve, which overlays the diachronic cohort slope with cohort
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Figure 7: Trellis plot of local diachronic age curves. Notes: Each panel displays the (overall) diachronic age
curve overlaid with local diachronic age curves. Horizontal axes are age in years, whereas vertical axes are
predicted probability of social trust. Calculations for the local curves are based on θ1(i − i∗) + α̃i + π̃i+k−I
for i = 1, . . . , I in each cohort k. Local curves are shown with solid lines, whereas the overall curve is shown
with a dashed line. Only cohorts with three or more age groups are displayed. All estimates are based on a
diachronic L-APC logistic regression model. Outcome is social trust, coded so that 1 = “can trust” while 0 =
“can’t be too careful” or “depends.” Results adjusted using sampling weights.

nonlinearities, is defined as

θ2(k − k∗) + γ̃k for k = 1, . . . , K, (13)

which is an overall measure of how cohorts differ through time. That is, Equa-
tion (13) represents social change as distinct from life-cycle change. Figure 8 displays
the diachronic slope and cohort curves for social trust. Panel (a) shows a steep
decline in the predicted probability of social trust, reflecting the large, negative
diachronic cohort slope in Table 3 (log-odds ratio: −0.677; p < 0.001). Panel (b)
shows that, as we compare cohorts through time, the predicted probability of social
trust exhibits trendless fluctuation but then declines precipitously, especially among
successive cohorts born after World War II. In summary, then, Figure 8 provides
clear evidence of substantial social change, supporting the claim that there has been
a collapse in social trust (e.g., see Robinson and Jackson 2001).
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Figure 8: Diachronic cohort slope and curve. Notes: (a) displays the diachronic cohort slope, whereas (b)
displays the diachronic cohort curve. Calculations are based on θ2(k − k∗) and θ2(k − k∗) + γ̃k, respectively,
for k = 1, . . . , K. Parameter estimates are derived from a diachronic L-APC logistic regression model.
Upper and lower bounds denote 95 percent confidence intervals. Outcome is social trust, coded so that
1 = “can trust” while 0 = “can’t be too careful” or “depends.” Results adjusted using sampling weights.

By including the cohort nonlinearities, the diachronic cohort curve provides
a more informative summary of social change than the diachronic cohort slope.
However, for a more detailed representation of inter-cohort trends, one can include
the period nonlinearities as well as those for cohort. The cohort–period Lexis surface,
which summarizes social change in terms of joint cohort–period parameters, is
defined as25

(
γ(k − k∗) + γ̃k

)
+

(
π(j − j∗) + π̃j

)
= θ2(k − k∗) + γ̃k + π̃j (14)

for all observed combinations of k = 1, . . . , K and j = 1, . . . , J. Equation (14) defines
a surface that varies across levels of cohort and period, but not age. Thus, this
surface reflects social change, or, equivalently, a set of inter-cohort trends. Figure 5
displays two- and three-dimensional cohort–period Lexis surfaces. The surface in
both panels reflects the pattern of the diachronic cohort curve in Figure 8(b), with
trust dropping steeply across cohorts born after World War II. Additional variability
is introduced by the period nonlinearities, but this heterogeneity is negligible
compared with the overwhelmingly steep decline observed as we compare cohorts
across periods.

Similar to the age–period Lexis surface, the cohort–period Lexis surface pro-
vides somewhat different summaries depending on whether or not one compares
predicted probabilities across cohorts within periods (i.e., columns) or ages (i.e.,
rows). Consider first the successive comparison of cohorts within a given period.
Usually comparing cohorts within a period would result in a set of static differences,
thereby giving a distorted view of social change. However, the cohort–period Lexis
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Figure 9: Two- and three-dimensional cohort–period Lexis surfaces. Notes: (a) and (b) display two-dimensional
and three-dimensional Lexis surfaces, respectively, of predicted probabilities of the outcome for all observed
combinations of cohort and period after adjusting for age. Calculations are based on θ2(k − k∗) + γ̃k + π̃j
for all observed combinations of k = 1, . . . , K and j = 1, . . . , J. All estimates are derived from a diachronic
L-APC logistic regression model. Outcome is social trust, coded so that 1 = “can trust” while 0 = “can’t be
too careful” or “depends.” Results adjusted using sampling weights.

surface in Figure 9 is calculated such that the diachronic age slope is zero. However,
as detailed in Appendix A of the online supplement, when the diachronic age slope
is zero, the synchronic cohort slope equals the diachronic cohort slope. Thus, the
probabilities of successive cohorts within a given period of the cohort–period Lexis
surface in Figure 9 are equivalent to those from a diachronic cohort curve, albeit
with a single period nonlinearity.26

Besides comparing the probabilities in Figure 9 across cohorts within periods,
one can also compare the probabilities across cohorts within ages. These probabil-
ities are equivalent to those from local diachronic cohort curves, which are defined
as

θ2(k − k∗) + γ̃k + π̃k+i−I for k = 1, . . . , K in each age i, (15)

where again the period nonlinearities are indexed by both cohort and age. These
curves are “local” in that they summarize the pattern of social change for each age
group. Similar to the local diachronic age curves, the local diachronic cohort curves
will usually differ from the overall diachronic cohort curve shown in Equation (13).
This is because the the period nonlinearities π̃k+i−I , which are indexed by age (as
well as cohort), will typically alter the shape of each age-specific diachronic cohort
curve. Moreover, because we are calculating the curve for each age group, the
length of each local diachronic curve will equal the number of period groups, not
the number of cohort groups. Thus, for younger age groups, the local diachronic
cohort curve will overlap a more recent section of the overall diachronic cohort
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Figure 10: Local diachronic cohort curves. Notes: (a) displays a spaghetti plot of local diachronic cohort curves.
(b) displays local diachronic cohort curves with the (overall) diachronic cohort curve overlaid. Calculations
are based on θ2(k − k∗) + γ̃k + π̃k+i−I for k = 1, . . . , K in each age group i. Local curves are shown with
dashed lines, whereas the overall curve is shown with a bold solid line. Each local curve has a length equal to
the number of periods in the data (J = 10). All estimates are based on a diachronic L-APC logistic regression
model. Outcome is social trust, coded so that 1 = “can trust” while 0 = “can’t be too careful” or “depends.”
Results adjusted using sampling weights.

curve. For older age groups, the local diachronic cohort curve will overlap an older
section of the overall diachronic cohort curve.

Figure 10 shows the local diachronic cohort curves for social trust. Panel (a) dis-
plays a spaghetti plot of local diachronic cohort curves, whereas panel (b) displays
the local diachronic cohort curves overlaid with the (overall) diachronic cohort
curve. Calculations are based on θ2(k − k∗) + γ̃k + π̃k+i for k = 1, . . . , K in each age
group i. Local curves are shown with dashed lines, whereas the overall curve is
shown with a bold solid line. Each local curve has a length equal to the number of
periods in the data (J = 10). To reveal more detail, Figure 11 displays a trellis plot
of the local diachronic cohort curves. Each panel displays the (overall) diachronic
cohort curve overlaid with local diachronic cohort curves. Local curves are shown
with solid lines, whereas the overall curve is shown with a dashed line. Findings
show that there is only relatively modest variation in age-specific social change.

In summary, as shown in the middle panel of Table 5, there are several parametric
expressions, of varying complexity, for representing inter-cohort trends (or social
change). The diachronic cohort slope and curve parsimoniously summarize the
social change that is observed as we compare successive cohorts through time. These
summaries are easily visualized as line graphs. Including the period nonlinearities,
however, requires calculating a cohort–period Lexis surface, which can be viewed
as a set of local diachronic cohort curves. Both the cohort–period Lexis surface and

sociological science | www.sociologicalscience.com 174 March 2023 | Volume 10



Fosse Dissecting the Lexis Table

18−22

0.0

0.2

0.4

0.6

1910 1940 1970

23−27

0.0

0.2

0.4

0.6

1910 1940 1970

28−32

0.0

0.2

0.4

0.6

1910 1940 1970

33−37

0.0

0.2

0.4

0.6

1910 1940 1970

38−42

0.0

0.2

0.4

0.6

1910 1940 1970

43−47

0.0

0.2

0.4

0.6

1910 1940 1970

48−52

0.0

0.2

0.4

0.6

1910 1940 1970

53−57

0.0

0.2

0.4

0.6

1910 1940 1970

58−62

0.0

0.2

0.4

0.6

1910 1940 1970

63−67

0.0

0.2

0.4

0.6

1910 1940 1970

68−72

0.0

0.2

0.4

0.6

1910 1940 1970

73−77

0.0

0.2

0.4

0.6

1910 1940 1970

78−82

0.0

0.2

0.4

0.6

1910 1940 1970

83+

0.0

0.2

0.4

0.6

1910 1940 1970

Pr
(T
ru
st
)

Pr
(T
ru
st
)

Pr
(T
ru
st
)

Cohort Cohort Cohort Cohort

Figure 11: Trellis plot of local diachronic cohort curves. Notes: Each panel displays the (overall) diachronic
cohort curve overlaid with local diachronic cohort curves. Horizontal axes are age in years, whereas
vertical axes are predicted probability of social trust. Calculations are based on θ2(k − k∗) + γ̃k + π̃k+i−I for
k = 1, . . . , K in each age group i. Local curves are shown with solid lines, whereas the overall curve is shown
with a dashed line. Each local curve has a length equal to the number of periods in the data (J = 10). All
estimates are based on a diachronic L-APC logistic regression model. Outcome is social trust, coded so that
1 = “can trust” while 0 = “can’t be too careful” or “depends.” Results adjusted using sampling weights.

local diachronic curves are crucial in revealing the pattern of social change unique
to specific age groups.

Ryderian Comparative Cohort Careers

The third panel of Table 5 lists two expressions for Ryderian comparative cohort
careers, which are composed of intra- and inter-cohort trends, or, equivalently, life-
cycle and social change. Using the diachronic L-APC model, adjusted comparative
cohort careers are defined as

Inter-cohort trend
(social change)︷ ︸︸ ︷

ϕk + π̃i+k−I + θ1(i − i∗) + α̃i
︸ ︷︷ ︸

Intra-cohort trend
(life-cycle change)

for i = 1, . . . , I in each cohort k, (16)
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where ϕk = θ2(k − k∗) + γ̃k. The collection of parameters θ1(i − i∗) + α̃i + π̃i+k−I ,
when calculated over age levels i = 1, . . . , I for each cohort k, represents a set of
intra-cohort trends (i.e., life-cycle change), whereas the collection of parameters
ϕk + π̃i+k−I , when compared across K cohorts, represents a set of inter-cohort
trends (i.e., social change). Together, these parameters define cohort-specific age
trajectories through time, or comparative cohort careers. Each trajectory is a “career”
in that it reflects the development of a cohort as it ages through time, but also
“comparative” in that it is uniquely differentiated due to its particular location in
time, which distinguishes it from all other cohorts.

To clarify how Equation (16) operates, it is helpful to break it down into three
separate parts with three different functions. First, the parameters θ1(i − i∗) + α̃i
define an overall curve that is invariant to the value of k. Second, ϕk, or θ2(k − k∗) +
γ̃k, determines the level of the kth cohort’s career. That is, for any given cohort k, the
parameter ϕk is just a single value, so it effectively acts as an intercept that varies
across cohorts. Finally, the period fluctuations, denoted by π̃i+k−I , have a dual role,
contributing both to variability within a cohort as well as variability across cohorts.
This is reflected in the fact that the π̃i+k−I parameters are indexed by both i and k,
or age and cohort.

The π̃i+k−I parameters in Equation (16) allow the shape of a career to vary in
complex ways across cohorts. In some instances admitting such heterogeneity may
be desirable, but in other applications it may obscure the underlying pattern of
life-cycle change across cohorts that is, from a Ryderian perspective, of fundamental
analytic interest.27 Researchers desiring a more parsimonious representation can
focus on interpreting the curves-only comparative careers that are purged of period
fluctuations. As shown in the third panel of Table 5, curves-only comparative cohort
careers are defined as

Inter-cohort trend
(social change)︷ ︸︸ ︷

ϕk + θ1(i − i∗) + α̃i︸ ︷︷ ︸
Intra-cohort trend
(life-cycle change)

for i = 1, . . . , I in each cohort k, (17)

where ϕk = θ2(k − k∗) + γ̃k. Again, the set of parameters θ1(i − i∗) + α̃i, when calcu-
lated over age levels i = 1, . . . , I for each cohort k, represents an intra-cohort trend
(i.e., life-cycle change), whereas ϕk, when compared across K cohorts, represents
an inter-cohort trend (i.e., social change). Because the cohort careers are purged
of period fluctuations, the shape of the curve is the same for all cohorts. However,
if cohorts are unbalanced, as is typically the case with APC data in sociology and
demography, most cohorts will be observed to experience only a section of the
overall curve.

Careful inspection of Equations (16) and (17) reveal that they are generalizations
of various diachronic curves. Regarding Equation (16), the comparative cohort
career is a generalization of the local diachronic age and cohort curves. If θ2(k −
k∗) + γ̃k is zero, then Equation (16) is equal to the equation for the local diachronic
age curve, or θ1(i − i∗) + α̃i + π̃i+k−I , which is calculated over age levels i = 1, . . . , I
for each cohort k. Similarly, if θ1(i − i∗) + α̃i is zero, then Equation (16) is equal
to the equation for the local diachronic cohort curve, or θ2(k − k∗) + γ̃k + π̃i+k−I .
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The main difference is that the local diachronic cohort curves are calculated over
cohorts k = 1, . . . , K for each age group i, whereas comparative cohort careers
are calculated over age levels i = 1, . . . , I for each cohort k. In a similar way
Equation (17) can be viewed as a generalization of the diachronic age and cohort
curves. If θ2(k − k∗) + γ̃k is zero, then Equation (17) to equal to the diachronic age
curve, or θ1(i − i∗) + α̃i. Likewise, if θ1(i − i∗) + α̃i is zero, then Equation (17) is
equal to that for the diachronic cohort curve, or θ2(k − k∗) + γ̃k.

Figure 12(a) displays the comparative cohort careers for social trust, whereas
Figure 12(b) displays the curves-only comparative cohort careers. In each graph, the
careers of the earliest cohorts are shown in the upper right, and the latest cohorts
are shown in the lower left. The only difference between panels (a) and (b) is
that the latter is purged of period fluctuations that vary across age and cohort
groups. The vertical differences between careers reflect inter-cohort trends (i.e.,
social change), whereas the shapes of the careers reflect intra-cohort trends (i.e.,
life-cycle change). If there were no social change—that is, no differentiation as
we compared cohorts through time—then all careers would collapse on top of
one other and both graphs would resemble the diachronic age curve displayed
in Figure 4(a). The only difference is that most cohorts would be some particular
section of the diachronic age curve, because the duration of each cohort career is
equal to the number of observed age categories, which is typically fewer than the
actual number of age categories. If there were no life-cycle change—that is, no
intra-cohort development as cohorts age through time—then all careers would be
horizontal lines with a length equal to the kth cohort’s number of observed age
categories. This hypothetical scenario is shown in Figure 13 using data on social
trust.

The vertical distances of the horizontal lines from each other are governed by the
values of ϕk. For example, as shown in Figure 13, the k = 14 cohort, with a midpoint
birth year of 1952, is represented by the parameter ϕk=14 with a corresponding
predicted probability of 0.38, whereas the k = 16 cohort, with a midpoint birth
year of 1962, is represented by the parameter ϕk=16 with a corresponding predicted
probability of 0.32. Thus, the vertical distance between the careers of these two
cohorts is given by 0.32 − 0.38 = −0.06. Note that if there were neither life-cycle
nor social change then the graph would simplify further, appearing as a single
horizontal line equal to the predicted probability of the intercept. Most cohorts,
however, would occupy just a particular section of the horizontal line, with a length
again equal to the number of observed (rather than actual) age categories.

In short, the two expressions for Ryderian comparative cohort careers in Table 5
unite information on both intra- and inter-cohort trends, or life-cycle and social
change. Cohort careers can be easily—yet powerfully—visualized using a series
of line graphs, as shown in Figure 12. The vertical spread indicates the degree of
social change, whereas the steepness of the curves reveals the extent of life-cycle
change. In general, curves-only cohort careers can help highlight underlying trends
and patterns that would otherwise be obscured by the inclusion of the period
nonlinearities.
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Figure 12: Ryderian comparative cohort careers. Notes: (a) displays comparative cohort careers, or ϕk +
π̃i+k−I + θ1(i − i∗) + α̃i for i = 1, . . . , I in each cohort k. (b) displays curves-only comparative cohort careers,
or ϕk + θ1(i − i∗) + α̃i for i = 1, . . . , I in each cohort k. Note that ϕk = θ2(k − k∗) + γ̃k. Only cohorts with
two or more age categories are displayed. All estimates are based on a diachronic L-APC logistic regression
model. Outcome is social trust, coded so that 1 = “can trust” while 0 = “can’t be too careful” or “depends.”
Results adjusted using sampling weights.
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Figure 13: Comparative cohort careers in absence of life-cycle change. Notes: Graph displays comparative
cohort careers under the hypothetical scenario of no life-cycle change (i.e., no intra-cohort trends). The
vertical distance from the intercept for each horizontal line is given by ϕk = θ2(k − k∗) + γ̃k. The length of
each horizontal line is equal to the number of observed age categories. For example, the k = 14 cohort, with
a midpoint birth year of 1952, has a parameter ϕk=14 with a corresponding predicted probability of 0.38. By
contrast, the k = 16 cohort, with a midpoint birth year of 1962, has a parameter ϕk=16 with a corresponding
predicted probability of 0.32. Thus, the vertical distance between the careers of these two cohorts is given
by the difference in predicted probabilities, or 0.32 − 0.38 = −0.06. Only cohorts with two or more age
categories are displayed. Cohort groups are labeled using midpoint values. All estimates are based on a
diachronic L-APC logistic regression model. Outcome is social trust, coded so that 1 = “can trust” while 0 =
“can’t be too careful” or “depends.” Results adjusted using sampling weights.

Intra-period Differences

Finally, the bottom panel of Table 5 displays various expressions for intra-period
differences. These are not a core part of Ryder’s approach but can provide insight,
albeit indirectly, into intra- and inter-cohort trends (and thus life-cycle and social
change). The simplest expressions are the age and cohort synchronic slopes, or
θ1 − θ2 = α − γ and θ2 − θ1 = γ − α, respectively. However, one can also estimate
synchronic age and cohort curves by adding their respective nonlinearities. The
synchronic age curve is given by

(θ1 − θ2)(i − i∗) + α̃i for i = 1, . . . , I. (18)

Similarly, the synchronic cohort curve is given by

(θ2 − θ1)(k − k∗) + γ̃k for k = 1, . . . , K. (19)

Both curves, because they are estimated from models that adjust for the period linear
component, are based on slopes that capture static differences rather than dynamic
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Figure 14: Synchronic age and cohort curves. Notes: (a) displays the synchronic age curve with an estimated
slope of θ1 − θ2 = 0.485. Overlaid red dashed line denotes the diachronic age curve with an estimated
slope of θ1 = −0.192. (b) displays the synchronic cohort curve with an estimated slope of θ2 − θ1 = −0.485.
Overlaid red dashed line denotes the diachronic cohort curve with an estimated slope of θ2 = −0.677.
Estimates are based on age and cohort synchronic L-APC logistic regression models, respectively. Outcome
is social trust, coded so that 1 = “can trust” while 0 = “can’t be too careful” or “depends.” Results adjusted
using sampling weights.

changes. Note again that the slopes of the curves are identical in magnitude but
with opposing signs. That is, one just needs to multiply one of the slopes by negative
one to obtain the other slope (e.g., (θ1 − θ2)(−1) = (θ2 − θ1)).

Panels (a) and (b) of Figure 14 display the synchronic age and cohort curves for
the social trust data. Both curves are overlaid with their diachronic counterparts.
The main problem with synchronic curves is that they are easily interpreted as
dynamic comparisons rather than static differences. As discussed previously, using
synchronic curves to estimate diachronic curves requires very strong assumptions
on the absence of overall (linear) life-cycle or social change (see Table 2 and the
accompanying discussion). In most applications these assumptions will not hold
and synchronic curves will be biased estimates of diachronic curves. For example,
as shown panel (a) of Figure 14, the slope of the synchronic age curve greatly over-
estimates the diachronic age curve, implying that cohorts of people are generally
more trusting as they age through time. This is not true, however, as shown by the
dashed line, which denotes the diachronic age curve. Likewise, as shown in panel
(b) of Figure 14, the slope of the synchronic cohort curve underestimates the decline
in social trust across cohorts.28

A more principled way of examining synchronic age and cohort measures is
to acknowledge that they reflect differences between designated levels of age and
cohort within a given period. Age–cohort comparisons within a particular period,
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or local synchronic age differences, are defined as

αi − γj−i+I = (θ1 − θ2)(i − i∗) + (α̃i − γ̃j−i+I) for all i in each period j, (20)

where the index for cohort is a function of varying age and period levels such that
k = j − i + I. Equation (20) can be interpreted as the difference, for designated
pairs of age and cohort levels in a given period, between the diachronic age and
cohort curves. Likewise, cohort–age comparisons within a particular period, or local
synchronic cohort differences, are defined as

γk − αj−k+I = (θ2 − θ1)(k − k∗) + (γ̃k − α̃j−k+I) for all k in each period j, (21)

where the index for age is a function of varying period and cohort levels such that
i = j − k + I. Similar to Equation (20), Equation (21) can be interpreted as the
difference, for designated pairs of cohort and age levels in a given period, between
the diachronic cohort and age curves.

The local synchronic age and cohort differences reveal the relative magnitude of
life-cycle versus social change in each period.29 If local synchronic age or cohort
differences are zero, then this indicates that, for designated age–cohort comparisons,
parameters representing life-cycle change are the same as those for social change in a
given period. That is, the slopes of the local synchronic differences in Equations (20)
and (21) will be zero if the diachronic age and cohort slopes are the same, such
that θ1 = θ2 and thus θ1 − θ2 = θ2 − θ1 = 0. Likewise, the nonlinearities will be
zero if designated pairs of age and cohort nonlinearities are the same, such that
α̃i − γ̃j−i+I = 0 for a given age i and period j or γ̃k − α̃j−k+I = 0 for a given cohort
k and period j.

However, if local synchronic age differences are positive (or negative), then
this reveals that, for designated age–cohort comparisons, parameters representing
life-cycle change are greater (or less) than those for social change in a given period.
For example, the slopes of the local age synchronic differences in Equations (20)
will be positive if the diachronic age slope is greater than the diachronic cohort
slope, such that θ1 > θ2 and thus θ1 − θ2 > 0. Likewise, the nonlinearities will
be positive if the designated age nonlinearities are greater than those for cohort,
such that α̃i − γ̃j−i+I > 0 for a given age i and period j. By contrast, if local
synchronic cohort differences are positive (or negative), then this indicates that,
for designated cohort–age comparisons in a given period, parameters representing
social change are greater (or less) than those for life-cycle change. For instance, the
slopes of the local cohort synchronic differences in Equation (21) will be positive
only if the diachronic cohort slope is greater than the diachronic age slope, such
that θ2 > θ1 and thus θ2 − θ1 > 0. Similarly, the nonlinearities will be positive
only if the designated cohort nonlinearities are greater than those for age, such that
γ̃k − α̃j−k+I > 0 for a given cohort k and period j.

Figures 15 and 16 display trellis plots for local synchronic age and cohort dif-
ferences, respectively. The top horizontal axes denote age in years, bottom hori-
zontal axes denote cohort in years, and vertical axes indicate the difference in the
predicted probability of social trust. The pairs of age and cohort levels that are
compared vary based on age, which is a sliding window across periods. Verti-
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Figure 15: Trellis plot of local synchronic age differences. Notes: Each panel displays the difference in
predicted probability of social trust for designated pairs of age and cohort levels. Calculations are based
on (θ1 − θ2)(i − i∗) + (α̃i − γ̃j−i+I) for i = 1, . . . , I in each period j. Top horizontal axes are age in years,
bottom horizontal axes are cohort in years, and vertical axes are the difference in the predicted probability
of social trust. The pairs of age and cohort levels that are compared vary based on age, which is a sliding
window across periods. Vertical dotted lines denote the beginning and end points of the age window in each
period. Positive (or negative) values indicate that, for particular age–cohort comparisons in a given period,
parameters representing life-cycle change are greater (or less) than those for social change. All estimates
are based on the age synchronic L-APC logistic regression model. Outcome is social trust, coded so that
1 = “can trust” while 0 = “can’t be too careful” or “depends.” Results adjusted using sampling weights.

cal dotted lines denote the beginning and end points of the age window in each
period. Each panel of Figure 15 displays the difference in predicted probability
of social trust for designated pairs of age and cohort levels, with the calculations
based on (θ1 − θ2)(i − i∗) + (α̃i − γ̃j−i+I) for i = 1, . . . , I in each period j. Likewise,
each panel of Figure 16 displays the difference in predicted probability of social
trust for designated pairs of cohort and age levels, with the calculations based on
(θ2 − θ1)(k − k∗) + (γ̃k − α̃j−k+I) for k = 1, . . . , K in each period j.

Figure 15 reveals that, for the defined age–cohort combinations, the predicted
probability of social trust is lower for life-cycle change than social change for earlier
periods, especially from 1970 to 1984. However, since the 1990s, the probability
of social trust is much larger for life-cycle change than social change. This is
particularly the case for younger age–cohort combinations, as indicated by the
growing positive “bulge” across the panels of Figure 15. Figure 16, which is based
on comparing cohort–age combinations, shows the inverse pattern of Figure 15.
Specifically, in earlier periods the probability of social trust is greater for social than
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Figure 16: Trellis plot of local synchronic cohort differences. Notes: Each panel displays the difference in
predicted probability of social trust for designated pairs of cohort and age levels. Calculations are based on
(θ2 − θ1)(k − k∗) + (γ̃k − α̃j−k+I) for k = 1, . . . , K in each period j. Top horizontal axes are cohort in years,
bottom horizontal axes are age in years, and vertical axes are the difference in the predicted probability
of social trust. The pairs of age and cohort levels that are compared vary based on age, which is a sliding
window across periods. Vertical dotted lines denote the beginning and end points of the age window in each
period. Positive (or negative) values indicate that, for particular cohort–age comparisons in a given period,
parameters representing social change are greater (or less) than those for life-cycle change. All estimates
are based on the cohort synchronic L-APC logistic regression model. Outcome is social trust, coded so that
1 = “can trust” while 0 = “can’t be too careful” or “depends.” Results adjusted using sampling weights.

life-cycle change, whereas in later periods the probability is lower for social than
life-cycle change, as indicated by the growing negative “bulge.” The results from
Figures 15 and 16 are consistent with those in Figures 4(b) and 8(b), which reveal a
relatively modest decline as cohorts age through time (i.e., life-cycle change) but a
steep collapse as we compare cohorts through time (i.e., social change).

In summary, extreme care should be exercised when calculating and displaying
synchronic age and cohort measures. Importantly, synchronic slopes and curves
represent static intra-period differences, not dynamic trends. As shown in Figure 14,
attempting to use synchronic measures in place of their diachronic counterparts
will give a misleading account of life-cycle and social change. A more principled
approach is to calculate local synchronic age and cohort differences. Although these
represent static intra-period differences, by comparing these differences across
periods, one can extract, albeit indirectly, some information about the relative
magnitude of life-cycle and social change. These local differences can be visualized
as a series of “bulges” that vary across periods, as shown in Figures 15 and 16.
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Generalization of Related Approaches

The previous sections outlined how the classic APC model can be adapted for
summarizing population-level temporal variability in keeping with Ryder’s vision
for cohort analysis. In this section I discuss three related approaches: first, the
analysis and graphical presentation of APC nonlinearities (e.g., O’Brien 2015:110–
12); second, a reformulation of the APC model by Duncan (1981); and, finally, a
linear decomposition proposed by Firebaugh (1989). Each of these techniques can
be viewed, in some sense, as special cases of the model-based approach discussed
in this article.

Due to space constraints, I restrict my discussion to techniques derived from
the conventional APC model, which is a “three-dimensional” model in that it
incorporates all three temporal variables. Thus, I omit from consideration “two-
dimensional” models, such as age–period models or, more generally, row–column
models, including those with row–column interactions (e.g., Luo and Hodges 2022).
Similarly, because they are not explicitly based on the classic APC model, I do not
discuss the wide range of informal graphical techniques for summarizing APC data
(for excellent reviews, see Robertson and Boyle [1998:1325–31] and Yang and Land
[2013:56–61]). Formal analyses of the relations between three- and two-factor APC
models as well as the relations between the parameters of the classic APC model
and informal graphical techniques are likely fruitful topics for further research. The
latter is especially important inasmuch as informal graphical displays, as opposed
to graphical displays derived from well-defined parametric expressions, may be
particularly misleading (for discussions on the limitations of informal graphical
approaches, see Yang and Land [2013:59–60] and Holford [1991:426–28]).

Models of APC Nonlinearities

Various researchers have emphasized the importance of modeling APC nonlineari-
ties (or deviations) apart from the linear components. As noted by some analysts,
under the classic APC model the nonlinearities are identified and can, at least
in some instances, reveal meaningful patterns in the data (Holford 1991:445–46;
O’Brien 2015:110–12). Typically the nonlinearities for age, period, and cohort are
presented separately along their respective dimensions, as shown in Appendix B
of the online supplement. However, as demonstrated by Acosta and van Raalte
(2019), additional insight can be gained by visualizing APC nonlinearities jointly on
a Lexis surface.

Figure 17(a), for example, displays two-dimensional Lexis heat maps of the age
and period nonlinearities for social trust, with calculations based on α̃i + π̃j for
all observed combinations of i = 1, . . . , I and j = 1, . . . , J. Likewise, Figure 17(b)
displays a two-dimensional Lexis heat map of cohort and period nonlinearities,
with calculations based on γ̃k + π̃j for all observed combinations of k = 1, . . . , K
and j = 1, . . . , J. Results show considerable temporal patterning, with pronounced
“bumps” in social trust for those individuals in middle age and for cohorts born in
the middle of the twentieth century.

Three points are worth noting about the results in Figure 17. First, although
informative in some examples (e.g., see Acosta and van Raalte 2019:1218–24), by
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Figure 17: Two-dimensional Lexis heat maps of age–period and cohort–period nonlinearities. Notes: (a)
displays a two-dimensional Lexis heat map of age and period nonlinearities, with calculations based on
α̃i + π̃j for all observed combinations of i = 1, . . . , I and j = 1, . . . , J. (b) displays a two-dimensional
Lexis heat map of cohort and period nonlinearities, with calculations based on γ̃k + π̃j for all observed
combinations of k = 1, . . . , K and j = 1, . . . , J. All estimates are derived from a diachronic L-APC logistic
regression model. Outcome is social trust, coded so that 1 = “can trust” while 0 = “can’t be too careful” or
“depends.” Results adjusted using sampling weights.

definition the nonlinearities in Figure 17 can reveal only local shifts, not overall
changes (or trends). Second, the curvature plots in Figure 17 can be interpreted
as special cases of the age–period and cohort–period Lexis surfaces discussed
previously. Specifically, Figure 17(a) is identical to the age–period Lexis surface in
Figure 5 except the diachronic age slope is zero; similarly, Figure 17(b) is identical
to the cohort–period Lexis surface in Figure 9 except the diachronic cohort slope is
zero. Finally, in principle there is additional variability beyond the conventional
model that could be modeled and displayed in Figure 17.30 This may render the
model less parsimonious (because more parameters would be included) but possibly
more informative depending on the particular substantive example. Extending the
conventional APC model to explicitly incorporate such additional heterogeneity is
a potentially promising area of methodological development.

Duncan’s Reformulation of the APC Model

In an unpublished manuscript (“A Reformulation in the APC Model”), Otis Dudley
Duncan (1981) suggested that the age–period parameters of the C-APC model
could represent Ryder’s concept of aggregate, cohort-specific life-cycle change and
thereby enable the analysis of comparative cohort careers. Specifically, Duncan
(1981:1) wrote that, “for the same cohort k at one time period (and age interval)
earlier,” the C-APC model is

yi−1,j−1,k = µ + αi−1 + πj−1 + γk. (22)
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Duncan further observed that taking the difference between a cohort k at age i and
period j versus age i − 1 and j − 1 yields

yijk − yi−1,j−1,k = (αi − αi−1) + (πj − πj−1) (23)

or
∆yij = ∆αi + ∆πj for a given k, (24)

where ∆ refers to first-differences between age and period levels. Duncan (1981)
argued that this “serves to describe the ‘trajectory’ of the cohort entering the pop-
ulation at time j = i + k” and that the “trajectory has a remarkably simple form
reflecting solely the separate row effects (of age) and column effects (of period)”
(P. 1). Quoting from an unpublished paper by Ryder (1979), Duncan concluded that
Equation (24) corresponds “to Ryder’s ‘assignment,’ which is ‘the characterization
of a cohort’s performance over the life cycle,’ so that the ‘dependent variable’ be-
comes ‘the entire curve of the variable across the age span, for a particular cohort”’
(Pp. 1–2). In fact, Equation (24) is the difference in predicted outcomes between age
i and period j versus age i − 1 and period j − 1 in cohort k, thereby providing infor-
mation about a section of a local diachronic age curve. To my knowledge, Duncan
was the first researcher to recognize, albeit partially, that some of the parameters
of the conventional APC model could be used to achieve Ryder’s stated goals for
cohort analysis.

Unfortunately, however, Duncan’s approach is of limited utility for a Ryderian
analysis. It appears that Duncan never realized how the conventional APC model
can be used to represent diachronic cohort trends or synchronic differences, nor
did he recognize that the parameters of the model can be separated into linear and
nonlinear terms, thus yielding an expanded set of population-level summaries.
Perhaps most problematic, Duncan (1981) erroneously believed, because the cohort
parameters have dropped out, that Equation (24) proved that cohort is a “vacuous”
variable that one should “abolish” (P. 2).31 As he concluded: “I suggest that the
APC model be recognized for what it is, an additive model of age and period effects
on cohort trajectories, and not a model of ‘cohort effects’ at all” (Duncan 1981:2).
Ryder’s (1981) response to Duncan’s conjecture was to the point: “Forgive me, but
I doubt that this is helpful.” Instead, Ryder (1981) interpreted Duncan as simply
stratifying on (and thus adjusting for) cohort: “My reading of what you have done
is to single out a lifetime record of a particular cohort, and express the change in the
value of a dependent variable as a consequence of the passage of the cohort from
period to period and from age to age.”

Firebaugh’s Linear Decomposition

Firebaugh (1989, 1990, 1997, 2008) has proposed what he calls “linear decomposition”
to examine social change in population-level data.32 Let Y denote an outcome, P a
continuous period variable measured in years, and C a continuous cohort variable,
also measured in years. Firebaugh recommended estimating the following model:

Yijk = µ + β1P + β2C + ϵijk, (25)
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where µ is the intercept, β1 is the slope for the continuous period variable P, β2 is
the slope for the continuous cohort variable C, and ϵijk is an error term. According
to Firebaugh (1997; see also 2008:197), β1 indicates “intracohort change,” whereas
β2 indicates “cross-cohort or intercohort change—the average difference between
adjacent cohorts” (Pp. 24–25). In fact, Equation (25) is equivalent to the cohort
synchronic slopes-only model displayed in Equation (4), with β1 = θ1 = α + π and
β2 = θ2 − θ1 = γ − α.

The main limitation of Equation (25) for a Ryderian analysis is that the cohort
slope is synchronic, not diachronic, describing static comparisons within periods
rather dynamic change across periods. This is in part why Norval Glenn (2005),
in a volume on methods for analyzing APC data, avoided discussing Firebaugh’s
approach. As Glenn (2005) wrote, “I do not describe Firebaugh’s techniques here
because I now believe that neither they nor similar means of decomposition is
[sic] very helpful for understanding change” (P. 36).33 An additional limitation is
that Equation (25) ignores nonlinearities for age, period, and cohort, discarding
information that would otherwise provide a richer, and potentially more revealing,
depiction of population-level temporal variability.

In short, modeling and graphing APC nonlinearities, Duncan’s reformulation of
the APC model, and Firebaugh’s “linear decomposition” are related approaches
that may provide insights on various patterns in APC data. In particular, as shown
by Acosta and van Raalte (2019), graphical displays of APC nonlinearities can
reveal substantively meaningful “bumps” in the data. By contrast, the techniques
developed by Duncan and Firebaugh are of more limited utility. Duncan’s reformu-
lation is simply equivalent to a comparison within a section of a local diachronic
age curve, whereas Firebaugh’s linear model is just the synchronic cohort model
with the restriction that the nonlinearities for age, period, and cohort are all zero.
Accordingly, the proposed approach is both more general and flexible than either of
these techniques.

Discussion and Conclusion

Drawing on the insights from Ryder’s (1965) classic essay, in this article I have
shown formally how the conventional APC model can be used in accordance
with Ryder’s goals for cohort analysis, enabling researchers to parsimoniously
summarize population-level temporal variability on the Lexis table. The diachronic
age slope, surface, and curves involve comparisons across age groups through time
within cohorts (i.e., intra-cohort trends), thereby representing life-cycle change. By
contrast, the diachronic cohort slope, surface, and curves entail comparisons of
cohorts through time (i.e., inter-cohort trends), thus representing social change.
Ryderian comparative cohort careers can be viewed as combining information on
both intra- and inter-cohort trends and, accordingly, life-cycle and social change.
Finally, synchronic age and cohort measures, representing intra-period differences,
provide information on the relative magnitude of life-cycle and social change
within periods. Together these summaries constitute a formal, unified framework
for describing the main trends and patterns on a Lexis table in a way that honors
Ryder’s vision for analyzing APC data.

sociological science | www.sociologicalscience.com 187 March 2023 | Volume 10



Fosse Dissecting the Lexis Table

Although researchers would benefit from calculating and visualizing all of
the expressions outlined in this article, the most illuminating are what I term
the “big three” summaries of population-level temporal variability. These are the
diachronic age curve (Eq. [10]), diachronic cohort curve (Eq. [13]), and both of
the Ryderian comparative cohort careers (Eqs. [16] and [17]). The diachronic age
curve summarizes how age groups differ through time, or life-cycle change. It can
also be interpreted as an overall measure of intra-cohort change. By contrast, the
diachronic cohort curve summarizes how cohorts differ through time, or social
change. Finally, comparative cohort careers, whether the curves-only variant or
not, depict, borrowing Ryder’s terminology, diachronic intra-cohort development
(i.e., life-cycle change) as well as diachronic inter-cohort differentiation (i.e., social
change). These “big three” summaries, which can and should be visualized as in
Figures 4, 8, and 12, provide, in a parsimonious way, the most essential information
on population-level temporal variability in any given time-series cross-sectional
data set. It is absolutely crucial to understand that, although expressed using
the classical APC model, these model-based summaries are purely descriptive in
that they do not rely on the introduction of information external to the data for
estimation.34 This has the great virtue that, consistent with Ryder’s goal (1965,
1979), such summaries (and accompanying visualizations) can provide a basis for
consensus across multiple sociological subfields.

If one must choose among these summaries, then arguably the most important
is the calculation and display of comparative cohort careers (see Figure 12), which
compactly depict the interplay of life-cycle and social change. This reflects Ryder’s
(1968) insight that the study of comparative cohort careers is “the most important
application of cohort analysis” (P. 546). Alternatively, if one were to include one
additional summary beyond the “big three,” then I recommend presenting the
adjusted marginal period curve (see Eq. [6] in the online supplement). Briefly, the
adjusted marginal period curve is a composite diachronic summary that captures
change in toto as a function of underlying life-cycle and social change.35 I also
strongly advise against estimating and displaying synchronic age and cohort curves
(Eqs. [18] and [19]), which are easily misinterpreted as representing intra- and inter-
cohort trends, respectively. As demonstrated previously, synchronic curves will
give biased estimates of diachronic curves except under very strong (but typically
testable) assumptions on the absence of overall (linear) life-cycle or social change
(see Table 2). As a more principled way to represent intra-period differences,
I recommend presenting and visualizing local synchronic differences (Eqs. [20]
and [21]), which reflect the relative magnitude of life-cycle versus social change in
each period.

There are several limitations of the current approach that point to potentially
fruitful areas of further research. First, the Ryderian approach outlined in this article
is based on distinguishing intra- from inter-cohort trends, not on deriving unique
APC effects, which may nonetheless be of primary interest in some applications.
Accordingly, future work should examine the extent to which a Ryderian approach
can complement analyses that attempt to identify separate APC effects, and vice
versa. Second, this article focused on analyzing APC data, defined as time-series
cross-sectional data organized by age, period, and cohort. Further research should
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consider applying and comparing the approach outlined in this article using other
kinds of data structures (e.g., panel data with multiple cohorts). As well, additional
work should contrast the life-cycle changes observed in time-series cross-sectional
data with those observed in panel data. In general, they should be similar, but
they are likely to differ due to changes in the compositions of cohorts. Although
the composition of cohorts will change in both panel data and time-series cross-
sectional data due to mortality, one would expect the latter to also be subject to
patterns of migration. Finally, this article concentrated on developing a Ryderian
cohort approach using the conventional APC model, which is by far the most
commonly used in the literature, and outlined how three related techniques can be
viewed as generalizations of this approach. However, as noted previously, there are
undoubtedly other models that can be used that are consistent, at least in part, with
Ryder’s theoretical framework (e.g., see Harding and Jencks 2003; Luo and Hodges
2022; Schulhofer-Wohl and Yang 2016). Further studies should compare the models
used in this article with these alternative models.

There are also a number of possible methodological extensions to the approach
outlined in this article. First, one can easily incorporate additional variables and
examine heterogeneity across these variables. For example, ethnicity (or race), social
class, and gender could be included, and variability in life-cycle and social change
could be examined and graphed. Second, the approach outlined in this article
relies on categorical age, period, and cohort variables with intervals of equal width.
However, despite widespread practice, there are noteworthy limitations to using
categorical APC data.36 Future work should treat APC data as continuous, express-
ing the diachronic and synchronic L-APC models in terms of parametric regression
splines (see Heuer 1997). Finally, the various model-based summaries discussed in
this article can be incorporated into a framework using stochastic counterfactuals,
as suggested by Fosse and Winship (2019a). For example, conditional on age, cohort
and period jointly define an observed difference (i.e., disparity or gap). Various
mechanisms could be proposed and examined to reduce this difference, thereby
explaining social change (cf. Jackson and VanderWeele 2018).

Many of the findings in the APC literature remain quite controversial, and there
are ongoing debates about the utility of various techniques. There is little doubt
that disputes on the appropriate way to analyze APC data are unlikely to abate
anytime soon. However, it is the viewpoint of this author that much would be
gained by analyzing APC data using the models, expressions, and visualizations
outlined here. Building on the seminal insights of Ryder (1965), as well as other
writings in his corpus, the Ryderian cohort-based approach developed in this article
offers a rigorous, transparent, and parsimonious way of formally summarizing
times-series cross-sectional data in the APC framework. With judicious application,
the proposed method has the potential to guide the development of theory, aid in
the accumulation of evidence, and build a common base of knowledge in a literature
often fraught with controversy.
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Notes

1 Time-series cross-sectional data entail repeated observations on the same population.
I will refer to time-series cross-sectional data organized by age, period, and cohort
generically as “APC data.” The interpretation of repeated cohorts of individuals tracked
over time, which has received less attention in the APC literature, is beyond the scope of
this article, but the general principles will be applicable.

2 Nash (1978:1–2) traces the concept of generation to ancient Greece, as revealed in Homer’s
Iliad, whereas Burnett (2010:11–14) locates the concept further back in time to ancient
Egypt.

3 Throughout I will refer to “calendar time” or “time” as synonymous with “periods.”

4 For a similar point, see Glenn (1977:22–23).

5 Fosse and Winship (2019a) provide a review and generalization of these methods, show-
ing that a large class of estimators can be viewed as special cases of a bounding analysis
under various theoretical assumptions.

6 There are frequent references to the “effects” of temporal variables in the APC literature
(e.g., Mason and Fienberg 1985). Note, however, that age, period, and cohort resemble
variables such as race or gender, which may be considered “non-manipulable” and thus
of dubious causal status by at least some who adopt, broadly speaking, the counterfactual
framework of causality (Rubin 1986; cf. Pearl 2009). Clarifying the interpretation of
APC parameters using the language and notation of contemporary causal inference is an
important topic for further research.

7 However, Glenn (2003) admitted that he never developed a formal means to analyze
APC data in the way that Ryder had envisioned.

8 For the purposes of this article, I will focus on a Lexis table with age as the rows and
period as the columns, with cohorts on the diagonals. This is natural because data are
typically collected on age and period, with cohort as the derived dimension.

9 Throughout I assume that the data consist of individuals indexed from r = 1, . . . , R,
where R is the total sample size. However, for simplicity of exposition in all equations I
omit the subscripts indexing individuals in the data.

10 By contrast, in analyses that attempt to derive unique temporal effects, the relationship
of age and cohort to calendar time (i.e., period) is apochronic (from Greek “apo-” meaning
“separate” and “khronos” meaning “time”). The reason is that, after fixing calendar
time to some particular value, we are comparing values of age or cohort independent of
calendar time itself (i.e., apochronically).

11 To reinforce the distinction between synchronic and diachronic measures, we will not use
the terms “trends” or “change” to refer to any synchronic quantity. The reason should be
clear: any trend or change must occur through calendar time, not within a cross-section
of calendar time.

12 This is a simplification. If birth cohorts are calculated using yearly data for age and
period, then individuals may have been born within a range of up to two years. For
example, the 1920 birth cohort is a midpoint value referring to individuals born between
1919 and 1921.

13 For simplicity we also assume that the age and period categories are of equal width. This
approach could likewise be easily extended to continuous data using regression splines
(see Heuer 1997).
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14 Note that I is added to j − i so that the cohort index begins at k = 1. This ensures that,
for example, i = j = k = 1 refers to the first group for all three temporal scales. One
could just as easily index the cohorts using k = j − i, but this identity would be lost.

15 This model could also be referred to as the life-cycle and social change (LC-SC) model
inasmuch as it can be used to represent intra- and inter-cohort trends or, equivalently,
life-cycle and social change.

16 With the L-APC model applied to data collected based on age and period, this is accom-
plished by replacing j with i + k − I and J with K − I + 1.

17 For a similar reason, the diachronic slopes-only model (Eq. [2]) is preferred over the age
and cohort synchronic slopes-only models (Eqs. [3] and [4]).

18 In APC data, these assumptions are typically testable simply because one can fit the
diachronic L-APC model instead of the age or cohort synchronic L-APC models.

19 Note that all three models (Eqs. [7], 8, and [9]) give the same predicted probabilities. This
is because each model fits the data equally well.

20 For example, Firebaugh (1989, 1990) refers to an “inter-cohort” slope estimand but does
not distinguish clearly between diachronic and synchronic variants of the slope. His
proposed model, as demonstrated later, in fact generates a synchronic slope estimate,
which is precisely what Ryder cautioned against in his writings.

21 Distinguishing between diachronic and synchronic “intra-” group comparisons is unnec-
essary, because intra-age and intra-cohort comparisons are always diachronic, whereas an
intra-period comparison is always synchronic. Thus, to label, for instance, an expression
a “diachronic intra-cohort slope” burdens it with unneeded verbiage.

22 The reason for this, as discussed later, is that there is additional cell-specific heterogeneity
on an age–period array that is not typically captured by the diachronic L-APC model.
Incorporating such extra variability into the diachronic L-APC model and thus the
parametric expressions outlined in this article is a subject for further research.

23 After substituting j = i + k − I and j∗ = i∗ + k − I, where k is some reference cohort,
note that α(i − i∗) + π(j − j∗) = θ1(i − i∗).

24 Specifically, θ1(i − i∗) + α̃i + π̃j for ages i = 1, . . . , I in a given period j. Note that this
curve can be viewed as “synthetic” in that no actual cohort experiences just a single
period nonlinearity over its entire life course.

25 After substituting j = i + k − I and j∗ = i + k∗ − I, note that γ(k − k∗) + π(j − j∗) =

θ2(k − k∗), where i is some reference age group.

26 Specifically, the probabilities across cohorts within a particular period are equivalent to
those from θ2(k − k∗) + γ̃k + π̃j in a specified period j.

27 Although he wrote relatively little on how to conduct cohort analysis, in his unpub-
lished writings Ryder appeared to advocate the separation of cohort careers from period
fluctuations (see Ryder 1979).

28 Although the bias for the synchronic cohort curve is not particularly large in this example,
this is not necessarily always the case.

29 Note that the local synchronic differences are relative and are in general not informative
about the magnitude of the parameters.

30 In an age–period table there are (I − 2) × (J − 2) additional parameters that can be
included. To understand how this is calculated, note that the diachronic L-APC model,
which is based on the conventional APC model, takes up 1+(I − 1)+ (J − 2)+ (K− 1) =
1 + (I − 1) + (J − 2) + ((I + J − 1)− 1) or 2(I + J)− 4 parameters. However, there are
I × J possible parameters in total. Thus, there are I J − (2I + 2J − 4) = I J − 2I − 2J + 4 =
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(I − 2)(J − 2) additional parameters that can be included beyond the diachronic L-APC
model. Using similar calculations, we can conclude that if we had a period–cohort table
or an age–cohort table, then we could include (J − 2) × (K − 2) or (I − 2) × (K − 2)
additional parameters, respectively.

31 For this reason, Duncan also believed that Equation (24) somehow allows one to identify
the unique effects of age and period. This is false, as Ryder (1981) correctly observed in a
letter to Duncan: “If the APC problem can be characterized as that of two equations in
three unknowns, the consequence of looking at the history of a particular cohort is to
collapse the problem into that of one equation in two unknowns. Your [Equation (24)] is
intractable in the sense that there is no way of making an observation about the effect of
a change in period which is not likewise an observation about the effect of a change in
age.”

32 His approach is “meant to be descriptive, not causal” (Firebaugh 2008:199).

33 Glenn (2005) argued that Firebaugh’s “decomposition is meaningful only in the absence
of age effects on the dependent variable” (P. 36). This is putatively because the cohort
slope in Equation (25) is synchronic and is thus equal to θ2 − θ1 or γ − α.

34 More formally, the summaries are based on a fully identified model with a design matrix
that is of full rank.

35 Specifically, the curve is a weighted sum of the diachronic age and cohort slopes, along
with period-by-period fluctuations.

36 For example, if the temporal variables are coded using different widths (e.g., age is coded
as five-year groups and period is coded as two-year groups), then this can generate
an artifactual zigzag pattern in the nonlinearities (see Holford 2006). Moreover, the
nonlinearities can fluctuate wildly due to sparseness. This is especially the case for
cohort, because data are typically collected based on age and period and thus there tend
to be very few individuals in the extreme cohorts.
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