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A Coding Self-Harm Visits

This section lists the ICD-9 and ICD-10 codes I use to calculate the number of self-
harm visits. For the main analysis, I only use codes listed under “self-inflicted harm”
in Healthcare Cost and Utilization Project (2021). Observations contribute to the
total count if any diagnosis code (i.e., whether primary or secondary) matched one of
these codes. This excludes suicidal ideation and “late effects” (“sequelae”).1 This also
excludes the ICD-10 code T14.91 (“Suicide attempt”), since it is unavailable for earlier
years (but see Section B for counts of visits coded as suicide attempts). For ICD-10, I
only use codes that specify the visit was for the “initial encounter.” For a full list of
codes (e.g., the codes used for accidental injuries), see the R script diagnosis codes.R

at https://github.com/cmfelton/13rw. Researchers who do not use R can still open
the script in a text editor and locate the lists of diagnosis codes.

• Intentional self-harm codes:

– ICD-9: All injury codes beginning with E950, E951, E952, E953, E954, E955,
E956, E957, and E958.

– ICD-10: All T and X codes specific to intentional self-harm coded as “initial
encounter.”

• Intentional cutting:

– ICD-9: All injury codes beginning with E956.

– ICD-10: X780XXA, X781XXA, X782XXA, X788XXA, and X789XXA.

• Accidental cutting:

– ICD-10: W25XXXA, W260XXA, W261XXA, W262XXA, W268XXA, and
W269XXA.

• Cutting, undetermined intent:

– ICD-10: Y280XXA, Y281XXA, Y282XXA, Y288XXA, and Y289XXA.

• Intentional poisoning:

– ICD-9: All injury codes beginning with E950, E951, or E952.

– ICD-10: All T codes specific to intentional poisoning coded as “initial en-
counter.”

1Initial analyses accidentally included E959, “late effects,” for the ICD-9 years. Counts and treat-
ment effect estiamtes were extremely similar.
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• Accidental poisoning:

– ICD-10: All T codes specific to accidental poisoning coded as “initial en-
counter.”

• Poisoning, undetermined intent:

– ICD-10: All T codes specific to poisoning with undetermined intent coded
as “initial encounter.”
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B Detailed Results

This section contains detailed results from alternative model selection procedures and
alternative time series (e.g., self-harm among girls 10–17 rather than 10–19). The results
are all consistent with the study’s main finding. It also contains ARIMA output tables,
alternative block sizes for placebo tests, etc. Data and code for replicating all analyses
can be found at https://github.com/cmfelton/13rw.

B.1 p-value Tables

This section contains tables of conformal p-values on the post-treatment period (Ta-
bles B.1 to B.3). That is, they test the null hypothesis of no treatment effect in the
post-treatment period.

Each table contains p-values from a different model specification and estimation
procedure, as outlined in Section E.1. Conformal inference poses two choices: the
length of the post-treatment period and the block size (Chernozhukov et al., 2021). I
report p-values for a range of different combinations of post-treatment-period lengths
and block sizes.

Length of Post-
Treatment Period
1 2 3

1 0.0081
Block 2 0.0081 0.0081
Size 3 0.0325 0.0081 0.0080

4 0.0244 0.0242 0.0080

Table B.1: Full specification (all pre-treatment data) conformal p-values.

Length of Post-
Treatment Period
1 2 3

1 0.0081
Block 2 0.0081 0.0081
Size 3 0.0488 0.0081 0.0080

4 0.0244 0.0242 0.0080

Table B.2: Split specification (all pre-treatment data) conformal p-values.
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Length of Post-
Treatment Period
1 2 3

1 0.0161
Block 2 0.0323 0.0159
Size 3 0.0806 0.0476 0.0156

4 0.1290 0.0635 0.0469

Table B.3: Split specification (estimation set) conformal p-values.

B.2 Treatment Effects

Figure B.1 plots treatment effects and 95% conformal confidence intervals across three
different block sizes and three different model selection procedures as described in Sec-
tion E.1. Briefly, Full entails selecting the model using the entire pre-treatment time
series and fitting it using that same series; Split entails selecting the model using the
first half of the pre-treatment series and fitting it using the second half; and Split Anal-
ysis, Full Estimation (SAFE) using the first half of the pre-treatment series to select a
model and the entire pre-treatment series to fit the model.2
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Figure B.1: Results by model-selection strategy and block size.

2I borrow the term SAFE from Faraway (2016).
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B.3 Placebo Test Results

I repeat the placebo test described in the main text across three block sizes (1, 2, and
3) using 90% conformal confidence intervals. Figures B.2–4 show the results. 90%
confidence intervals with block size = 3 appear conservative, but I avoid using these
intervals in the main text because block sizes greater than 1 appear to produce strange
results. For instance, intervals with block size = 2 provide much worse coverage than
with block size = 1.

Effect estimates with 95% conformal CIs

Pre-treatment,
covering 0

Pre-treatment,
excluding 0 Post-treatment
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Figure B.2: Repeated placebo test procedure with 90% conformal confidence intervals and a block
size of 1 with an expanding training period.

I repeat the procedure another three times, again across block sizes 1, 2, and 3.
This time, instead of expanding the training period each time, I shift the period over
by one month. This means that the sample size remains constant across tests. The
results are much worse: confidence intervals are extremely unstable, particularly with
block sizes greater than 1. The width of the intervals varies wildly across periods—
even consecutive periods. 95% confidence intervals, unreported here, show even more
instability.
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Figure B.3: Repeated placebo test procedure with 90% conformal confidence intervals and a block
size of 2 with an expanding training period.
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Figure B.4: Repeated placebo test procedure with 90% conformal confidence intervals and a block
size of 3 with an expanding training period.
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Figure B.5: Repeated placebo test procedure with 90% conformal confidence intervals and a block
size of 1 with a sliding training period.
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Figure B.6: Repeated placebo test procedure with 90% conformal confidence intervals and a block
size of 2 with a sliding training period.
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Figure B.7: Repeated placebo test procedure with 90% conformal confidence intervals and a block
size of 3 with a sliding training period.

B.4 Residual Plots for Alternative Model Specifications

Figure 13 in the main text shows residuals from the main model specification used
in the paper applied to the entire time series (including nine post-treatment periods).
It showed that the residuals for April and May 2017 are much larger than all other
residuals. We might worry, however, that this pattern is model-dependent—i.e., that
other plausible model specifications produce different patterns. Figures B.8–11 show
that alternative model specifications produce the same pattern. Across model selec-
tion procedures, auto.arima() selects fairly simple models, so Figures B.10 and B.11
consider more complex model specifications.
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Figure B.8: Residuals from ARIMA selected using the full time series. This model was
selected by running auto.arima on the full time series, not just the pre-treatment data. If anything,
we should expect it to overfit April and May 2017. The specification is (0, 1, 2)(0, 1, 1)12.
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Figure B.9: Residuals from Split ARIMA specification run on the full time series. An
ARIMA(2, 1, 0)(1, 1, 0)12.
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Figure B.10: Residuals from a more complex ARIMA specification run on the full time
series. An ARIMA(3, 1, 1)(1, 1, 0)12.
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Figure B.11: Residuals from another, more complex ARIMA specification run on the full
time series. An ARIMA(4, 1, 2)(1, 1, 0)12.

B.5 ARIMA Tables

Tables B.4 to B.7 show ARIMA output tables for the different ARIMA models used to
estimate treatment effects for girls 10–19.

ARIMA(2, 1, 0)(1, 1, 0)12

yt−1 yt−2 yt−12

Coef. −0.7670 −0.4037 −0.6763

xSE (0.1241) (0.1272) (0.0970)

Obs. (pre-differencing) 74

Obs. (post-differencing) 61

σ̂2 = 93530 log likelihood = −438.14

AIC = 884.28 AICc = 885 BIC = 892.73

Table B.4: Split specification (training set).
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ARIMA(2, 1, 0)(1, 1, 0)12

yt−1 yt−2 yt−12

Coef. −0.3623 −0.1223 −0.2678

xSE (0.1282) (0.1341) (0.1447)

Obs. (pre-differencing) 74

Obs. (post-differencing) 61

σ̂2 = 170163 log likelihood = −452.89

AIC = 913.78 AICc = 914.5 BIC = 922.22

Table B.5: Split specification (estimation set).

ARIMA(2, 1, 0)(1, 1, 0)12

yt−1 yt−2 yt−12

Coef. −0.5280 −0.2192 −0.4528

xSE (0.0894) (0.0912) (0.0855)

Obs. (pre-differencing) 135

Obs. (post-differencing) 122

σ̂2 = 139390 log likelihood = −895.67

AIC = 1799.33 AICc = 1799.68 BIC = 1810.55

Table B.6: Split specification (all pre-treatment periods). This corresponds to
the SAFE model.
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ARIMA(0, 1, 1)(0, 1, 1)12

ût−1 ût−12

Coef. −0.6501 −0.5080

xSE (0.0782) (0.0867)

Obs. (pre-differencing) 135

Obs. (post-differencing) 122

σ̂2 = 124772 log likelihood = −889.96

AIC = 1785.92 AICc = 1786.12 BIC = 1794.33

Table B.7: Full specification (all pre-treatment periods).

B.6 Model-Free Plots

Figure B.12 shows the entire time series, with a separate line for each year to make
the consistent seasonality more apparent. Figure B.13 shows that self-harm visits are
typically higher in March than February, and Figure B.14 shows that self-harm visits
are usually lower in April than March. Figure B.15 plots the first-differenced time
series by month, with 2017 observations colored red (pre-treatment) and green (post-
treatment). Figure B.16 shows the proportion of self-harm visits (among teen girls)
that are for cutting sequentially.
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Figure B.12: Self-harm visits for the full time series. The series exhibits seasonality and an
upward trend starting in 2012. The rise from December to January and fall from January to February
matches what we see in all-group suicide mortality data. The broader seasonal pattern, however, is
the opposite: typically suicide mortality is higher in the summer, but self-harm visits for teen girls are
lowest during the summer months.
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Figure B.13: Self-harm visits across all Februaries and Marches. The count of self-harm
visits is typically higher in March.
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Figure B.14: Self-harm visits across all Marches and Aprils. The count of self-harm visits is
typically lower in April, except in 2013 and 2017.
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Figure B.15: First-differenced self-harm visits for the entire time series. April 2017 is
unusual relative to other Aprils—most are negative, and the two positive observations are much closer
to zero. While January 2017 is larger than other Januaries, these values show larger variance and tend
to be positive. In this respect, it’s not quite as unusual as April 2017. The large negative value for
June 2017 is also noteworthy—there’s a large drop between May 2017 and June 2017, indicating a
fading of the treatment effect.
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Figure B.16: Proportion of Self-Harm Visits for Cutting. Proportion of ER visits for
intentional-self harm for teenage girls that are for cutting. The red triangles show the proportions
for April and May of 2017. Dashed lines show 5th and 95th percentiles of the distribution.

B.7 ITS Plots with Alternative Series

Figures B.17–21 show ITS plots for alternative time series. For each series, I re-run
auto.arima() on the full pre-treatment series and construct 95% conformal prediction
intervals. Figure B.17 uses Bridge et al.’s (2020) age grouping (10–17) rather than
Niederkrotenthaler et al.’s (2019). Figure B.18 looks only at self-harm visits for cutting
or poisoning, excluding rarer forms. Because the time series exhibits a strong upward
trend (and more noticeable seasonality) starting in 2013, I re-run the analysis starting
the time series at January 2013 in Figure B.19, and again starting at January 2014
in Figure B.20. Figure B.21 shows results using unweighted counts. All show a large
increase in self-harm visits in the post-treatment period, with 95% conformal prediction
intervals excluding the observed count.
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Figure B.17: ITS Analysis Using Self-Harm Visits for Girls 10–17. The ARIMA model is
selected using auto.arima() on the full pre-treatment time series. The forecasted point is shown with
95% conformal prediction intervals and block size = 1.
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Figure B.18: ITS Analysis Using Self-Harm Visits for Poisoning and Cutting. The ARIMA
model is selected using auto.arima() on the full pre-treatment time series. The forecasted point is
shown with 95% conformal prediction intervals and block size = 1.
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Figure B.19: ITS Analysis Using Shorter Pre-Treatment Series. The ARIMA model is
selected using auto.arima() on the pre-treatment series starting in January, 2013 to account for a
potential structural break between 2012 and 2013. The forecasted point is shown with 95% conformal
prediction intervals and block size = 1.
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Figure B.20: ITS Analysis Using an Even Shorter Pre-Treatment Series. The ARIMA
model is selected using auto.arima() on the pre-treatment series starting in January, 2014 to account
for a potential structural break between 2013 and 2014. The forecasted point is shown with 95%
conformal prediction intervals and block size = 1.
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Figure B.21: ITS Analysis Using Unweighted Counts of Self-Harm Visits. The ARIMA
model is selected using auto.arima() on the full pre-treatment series. The forecasted point is shown
with 95% conformal prediction intervals and block size = 1.

B.8 ITS Plot for Teen Boys with an Alternative ARIMA Spec-
ification

For teen girls, men 40–65, and women 40–65, AIC-guided stepwise selection on the
raw time series produces ARIMA specifications that include both first- and seasonal-
differencing. But for teen boys, it produces a specification with only seasonal-differencing.
The plot in the main paper includes first- and seasonal-differencing, as my general ap-
proach to ITS includes performing the differencing first.3 Figure B.22 shows the results
using the model chosen without forced differencing.

3This allows us to use forecasters other than ARIMA; in this particular application, I exclusively
use ARIMA models since they performed the best in the exploratory dataset.
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Figure B.22: ITS Analysis for Teen Boys Using Alternative ARIMA Specification. The
ARIMA model is selected using auto.arima() on the full pre-treatment series without forcing differ-
encing. The algorithm selects seasonal-differencing but not first-differencing. The forecasted point is
shown with 95% conformal prediction intervals and block size = 1.

B.9 ER Visits Coded as Suicide Attempts

A relatively small fraction of ER visits for intentional self-harm are coded as “suicide
attempts,” but only after the introduction of ICD-10 in October 2015. Figure B.23
shows counts of these visits for teen girls. The series is quite noisy with different
trajectories across years. Nonetheless, the plot supports the main finding. There is a
sharp increase between March and April of 2017, and counts remain elevated in May
2017.
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Figure B.23: ER Visits Coded as Suicide Attempts, Girls 10–19. The series is much noisier
than the series of self-harm visits. The sharp, post–March 2017 increase in counts is consistent with
the main findings.
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C Measurement Error

In this section, I provide evidence that measurement error in the time series produces
little to no bias in the estimated treatment effect. The evidence is simulation-based,
and should thus be taken with a grain of salt: the true measurement error function
is unknown, so it is unclear how well the simulated measurement error approximates
reality. However, across six different simulated measurement error functions, the es-
timated bias is extremely close to zero, which should largely assuage concerns about
measurement error in the observed time series. Code for replicating all simulations can
be found at https://github.com/cmfelton/13rw.

There are at least two sources of measurement error in the series. First, the counts
are estimated from a sample, not known. Second, many observations are dropped due
to missing data on month of visit, age, and gender, as shown in Table C.1, which may
bias the estimated counts toward zero. It is also worth noting that, because the NEDS
draws a new sample of hospitals each year, the measurement error may vary by year.
All six simulated measurement error functions account for this yearly variation.

Year Total Obs. Complete Obs. % Dropped

2006 25,702,597 20,852,495 18.9%

2007 26,627,923 22,085,226 17.1%

2008 28,447,148 23,936,411 15.9%

2009 28,861,047 24,396,152 15.5%

2010 28,584,301 24,091,391 15.7%

2011 28,788,399 24,459,034 15.0%

2012 31,091,020 25,930,759 16.6%

2013 29,581,718 24,490,491 17.2%

2014 31,026,417 26,247,242 15.4%

2015 (Q1–Q3) 29,696,059 27,200,272 8.4%

2015 (Q4) 5,837,947 4,986,489 14.6%

2016 32,680,232 29,078,732 11.0%

2017 33,506,645 29,321,114 12.5%

Table C.1: Number of total observations and complete observations (in gender, month, and age) by
year.

Before describing the procedure in detail, I will review the basic logic behind it.
The observed time series and estimated treatment effect in the main study will be
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treated as the “ground truth.” I then bootstrap that series and add additional mea-
surement error in each iteration. If the ITS estimator is able to recover the true
simulated treatment effect (on average) in spite of the measurement error, then the
simulated measurement error produces no bias in our treatment effect estimates. If the
simulated measurement-error-generating process is similar to the true (but unknown)
measurement-error-generating process, we should be more confident that the measure-
ment error in the observed time series does not bias the ITS estimator.

The simulation procedure, in broad terms, works as follows:

1. Simulate a time series of potential outcomes under control Y ∗
t (0) of length T .

2. For the post-treatment period T , add a hypothetical treatment effect τ̃ to the
simulated potential outcome under control (Y ∗

T (0)) to obtain a simulated potential
outcome under treatment (Y ∗

T (0) + τ̃ = Y ∗
T (1)). Across all simulations in this

appendix, I set τ̃ to 1,297, the estimated treatment effect in the study.

3. Simulate measurement errors ϵt and them to the full simulated time series.

4. Apply the ITS procedure used in the main paper to the simulated time series:

(a) Run auto.arima() on the simulated pre-treatment series to obtain a fore-
casting model.

(b) Using the selected and fitted model, forecast the post-treatment potential

outcome under control pY ∗
T (0).

(c) Obtain a treatment effect estimate by subtracting the forecasted outcome

from the observed outcome: Y ∗
T (1)− pY ∗

T (0) = Y ∗
T − pY ∗

T = τ̂ .

(d) Store the estimated treatment effect.

5. Repeat Steps 1–4 m = 5, 000 times.

6. Compute the bias as the sample mean of τ̂ minus τ̃ .

Next, I describe how I simulate the time series.

C.1 Simulating the Time Series

Simulating time series data for this exercise is not straightforward. One option is to
simulate the data from an ARIMA model using a function like sarima.sim() from
the astsa package, but this can result in the simulated time series having drastically
different variance from replication to replication, even when the errors are drawn from
the same distribution. This will in turn make the simulated treatment effect more
or less pronounced across iterations. It can also result in time series that look very
different from the series in question.

As an alternative, I use the bootstrapping procedure described in Bergmeir et al.
(2016) to simulate time series. The procedure works as follows:
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1. Transform the time series using the Box–Cox transformation.

2. Decompose the series into seasonal, trend, and remainder components using the
STL procedure of Cleveland et al. (1990).

3. Shuffle blocks of the remainder to get a new remainder series.

4. Add the new remainder series to the trend and seasonal components from Step 2
to get a simulated, Box–Cox-transformed series.

5. Reverse the Box–Cox transformation on the simulated series.

6. Repeat Steps 3–5 m = 5, 000 times to produce m time series.

I use the bld.mbb.bootstrap function from the forecast package to generate boot-
strapped simulations. I use a block size of 3, but results in Section D suggest the block
size matters very little.

I apply this bootstrapping procedure to a partly synthetic time series consisting of
(i) the full pre-treatment time series and (ii) the one-step-ahead forecast from the main
ARIMA specification used in the paper for the post-treatment period. This partly syn-
thetic time series represents the “observed” series of potential outcomes under control,
which I call qYt(0). Each bootstrap replication represents a simulated series of potential
outcomes under control Y ∗

t (0). The reason I do not bootstrap the full observed time
series is that the treatment effect will get picked up as part of the remainder component
in the STL decomposition and thus be shuffled into the simulated time series Y ∗

t (0).

C.2 Simulating Measurement Errors

I consider six measurement-error-generating processes and report the estimated bias
across 5,000 simulations:

1. I draw one measurement error per year from a N (0, 200) distribution, where
N (µ,σ) represents the Gaussian probability distribution with mean µ and stan-
dard deviation σ. The yearly measurement error is applied to each month in that
year. I.e., if the first draw is 50, we add 50 to each month in 2006. Estimated
bias: 1, 309.048− 1, 297 ≈ 12.0 (0.9%).

2. I draw one measurement error per year from a U[−300,300] distribution, where U[a,b]

represents the continuous uniform probability distribution with minimum a and
maximum b. The yearly measurement error is applied to each month in that year.
Estimated bias: 1, 303.737− 1, 297 ≈ 6.7 (0.5%).

3. I draw one mean µj per year from a U[−300,300] distribution, and then 12 monthly
measurement errors ϵt for that year from a N (µj, 100) distribution. Estimated
bias: 1, 301.337− 1, 297 ≈ 4.3 (0.3%).
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4. Same as (1), but the yearly errors are drawn from a N (−200, 200) distribution.
Estimated bias: 1, 310.312− 1, 297 ≈ 13.3 (1%).

5. Same as (2), but the yearly errors are drawn from a U[−500,100] distribution.
Estimated bias: 1, 297.978− 1, 297 ≈ 0.98 (0.08%).

6. Same as (3), but the yearly means are drawn from a U[−500,100] distribution.
Estimated bias: 1, 305.899− 1, 297 ≈ 8.9 (0.7%).

The true measurement-error-generating process will obviously differ from the sim-
ulated process. But the fact that the estimated bias is extremely close to zero across
all six settings provides us with decent assurance that the true measurement-error-
generating process creates little to no bias for the ITS estimator.
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D Assessing Type-M and Type-S Error

In this section, I show that type-M and type-S error pose only a small threat to my
analysis. High-variance estimators can produce exaggerated effect sizes, conditional on
the estimates being statistically “significant.” Gelman and Carlin (2014) introduce the
expected type-M error, where the m stands for magnitude, to quantify this conditional
exaggeration. The expected type-M error is calculated by dividing the expectation of
the absolute value of an estimate by the true effect size, conditional on the estimate
being statistically significant. In practice, we don’t know the true effect size, but we
can calculate the expected type-M error under different hypothetical values for this
quantity. They define the type-S error rate as the probability a statistically significant
estimate has the wrong s ign, which also requires specifying a hypothetical true effect
size.

I conduct simulations to estimate the expected type-M error, type-S error, and
power under different hypothetical effect sizes. Code for replicating all simulations can
be found at https://github.com/cmfelton/13rw. The procedure is similar to that
used in Section C. It works as follows:

1. Simulate a time series of potential outcomes under control Y ∗
t (0) of length T .

2. For the post-treatment period T , add a hypothetical treatment effect τ̃ to the
simulated potential outcome under control (Y ∗

T (0)) to obtain a simulated potential
outcome under treatment (Y ∗

T (0) + τ̃ = Y ∗
T (1)).

3. Apply the ITS procedure used in the main paper to the simulated time series:

(a) Run auto.arima() on the simulated pre-treatment series to obtain a fore-
casting model.

(b) Using the selected and fitted model, forecast the post-treatment potential

outcome under control pY ∗
T (0).

(c) Obtain a treatment effect estimate by subtracting the forecasted outcome

from the observed outcome: Y ∗
T (1)− pY ∗

T (0) = Y ∗
T − pY ∗

T = τ̂ .

(d) Compute a conformal p-value for the observed, simulated outcome Y ∗
T .

4. Repeat Steps 1–3 m = 5, 000 times.

5. Calculate the expected type-M error as follows:

(a) Subset to estimates for which p < 0.05.

(b) Calculate the mean of |τ̂ | among this subset and divide by the true treatment
effect τ̃ .

6. Calculate the type-S error rate as follows:
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(a) Subset to estimates for which p < 0.05.

(b) Calculate the proportion of estimates that have the wrong sign (i.e., are
negative) among this subset.

7. Calculate power as follows:

(a) Calculate the proportion of all estimates for which p < 0.05.

8. Repeat Steps 1–7 across five different hypothetical effect sizes τ̃ , described below.

Next, I explain how the simulations work, and then I describe how I chose effect sizes.

D.1 Simulating the Time Series

For the same reasons described in Section C, I use the bld.mbb.bootstrap function
from the forecast package to generate bootstrapped simulations of the time series. I
perform the entire procedure across two block sizes: 24 (the software default, 2 × the
time series frequency) and 3. Results are extremely similar across the two block sizes,
so I explore no other block sizes. As in Section C, and for the same reasons described
there, I bootstrap a partly synthetic time series consisting of (i) the full pre-treatment
time series and (ii) the one-step-ahead forecast from the main ARIMA specification
used in the paper for the post-treatment period.

D.2 Choosing a Hypothetical Effect Size

Once I obtain a simulated control series, I add a hypothetical treatment effect τ̃ to the
simulated post-treatment value. To choose reasonable values for τ̃ , I first looked to Fink
et al. (2018)’s study of the effects of Robin Williams’s suicide on suicide mortality. Fink
et al. (2018) found that in August 2014, suicide mortality among people aged 30–44 was
18.3% higher than in the predicted counterfactual (see Table 1 in Fink et al. (2018)).
It is worth noting, however, that Robin Williams died in the middle of August, so this
may underestimate the one-month treatment effect. I expect this effect estimate to be
less vulnerable to type-M errors for two reasons. First, the authors use population-level
CDC mortality data, whereas the self-harm counts I use are estimated from a sample.
As a consequence, we should expect that my time series is noisier, and thus my ITS
estimator higher variance. Second, because Robin Williams was widely beloved and his
death widely covered, a large effect size for his suicide is plausible.

In the simulations, I vary the value of τ̃ as a function of the Fink et al. (2018)
estimate as follows:

1. For some value 0 < δ ≤ 1, I calculate 0.183 × δ × qYT (0) = qYT (1). Recall that
qYT (0) is just the one-step-ahead forecast from the ARIMA model used in the main
analysis. 0.183 represents the Robin Williams effect size.
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2. Calculate τ̃ = qYT (1)− qYT (0).

I then use this same value τ̃ across all m = 5, 000 simulations. I conduct simulations
across five values of δ: 0.2, 0.4, 0.6, 0.8, and 1. Figures D.1–6 show the results. Only
for δ = 0.2 are the results especially concerning.
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Figure D.1: Expected type-M error as a function of effect size with block size = 24. δ
represents the magnitude of the assumed effect size relative to the effect of Robin Williams’s death on
suicide mortality among people age 30–44.
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Figure D.2: Type-S error rate as a function of effect size with block size = 24.
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Figure D.3: Power as a function of effect size with block size = 24.
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Figure D.4: Expected type-M error as a function of effect size with block size = 3.
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Figure D.5: Type-S error rate as a function of effect size with block size = 3.
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Figure D.6: Power as a function of effect size with block size = 3.
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E Methodological Details

In this section, I outline the general approach I use to conduct the ITS analysis. It
is a general approach because it can incorporate any forecasting model, from simple
autoregressions to gradient-boosted trees and neural networks. The approach seeks
to solve three problems that might affect ITS analyses: (i) poor predictive accuracy
and invalid inference from non-stationary data; (ii) poor predictive accuracy and in-
valid inference from data-driven model selection; and (iii) invalid inference from model
misspecification. First- and seasonal-differencing solve the first problem. Exploratory
datasets and sample-splitting solve the second problem. Conformal inference solves the
third problem.

I found that parts of the procedure—like sample-splitting and conformal inference—
matter little in this particular application. They might, however, make a difference in
other settings where overfitting is more likely or the dataset much larger.

In the next section, I sketch out this approach in detail, described graphically in
Figure E.1. In the section that follows, I provide a brief tutorial on how conformal
inference works.

E.1 Methodological Approach

As Romer (2020) points out, secular trends, if unaccounted for, can lead to poor out-
of-sample predictive accuracy with forecasting models. Furthermore, many inferential
methods—including conformal inference—assume some sort of stationary for validity.
While certain forecasting methods like ARIMA can difference the data under the hood,
most do not. For instance, if we want to use gradient-boosted trees to forecast, we
should make sure our data is stationary first. First- and seasonal-differencing often
succeed in making data stationary, and we can use a combination of visual inspection
and formal statistical procedures to assess stationarity (see Hyndman and Athana-
sopoulos (2018) for a more thorough discussion). In this study, I use ARIMA models
that automatically difference the data and automatically de-difference (i.e., integrate)
the predicted values.

It is worth providing more context for the discussion of overfitting. ITS provides
us with causal identification when we know the true model for the potential outcomes
under control. In practice, we lack knowledge of the true data-generating process. A
first thought might be to use our time series to select the model from a large set of
models according to some goodness-of-fit metric. But using the same data to both
select and estimate a model comes with serious drawbacks. We might overfit the data,
leading to poor out-of-sample prediction and invalid prediction intervals (Freedman,
1983; Faraway, 2016; Berk, 2021). This problem can be particularly severe when we use
machine learning estimators (or simply select parametric models based on goodness-of-
fit metrics that fail to account for model complexity like R2). I propose two procedures
to avoid this problem.

First, we can use a distinct time series with similar trends and seasonality as an
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Pre-Process Data

First- and seasonally-difference the raw time series to remove trends and
seasonality, respectively.

• Full time series: Y1,Y2, . . . YT

• First-differenced outcomes: qYt = Yt − Yt−1 (read “Y-check”)

• First- and seasonally-differenced outcomes: Ỹt = qYt − qYt−12 (read
“Y-tilde”)

• Full first- and seasonally-differenced time series: Ỹ14, Ỹ15, . . . , ỸT

Subset to Pre-Treatment Data

Let T0 represent the final pre-treatment period, and subset the pre-processed
series to only the pre-treatment observations.

• Y = (Ỹ14, Ỹ15, . . . , ỸT0) (read “calligraphic-Y” or “script-Y”)

Split Series into Training and Estimation Sets

Split the pre-treatment series Y into two equally-sized series. In this case,
each series is 61 months long.

• Ytrain = (Ỹ14, Ỹ15, . . . , Ỹ74)

• Yest = (Ỹ75, Ỹ76, . . . , ỸT0)

Split Selection
and Estimation

Select a forecasting
model using Ytrain

and estimate it using
Yest.

Split Selection,
Full Estimation

Select a forecasting
model using Ytrain

and estimate it using
Y = (Ytrain,Yest).

Full Selection
and Estimation

Select a forecasting
model using Y and
estimate it using Y.

Figure E.1: Diagram illustrating model selection and estimation procedures. The three separate
selection–estimation procedures yield extremely similar results in this setting.

exploratory dataset. In this application, I used CDC suicide mortality data (for all
people, not just teen girls) to assess a variety of forecasting methods. I used this
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data to select a model class, namely, ARIMA models with no additional covariates.4

I found that using AIC-guided stepwise selection (implemented with the R function
auto.arima() from the forecast package) to choose a model order worked well in the
CDC data, and in extensive simulations, I found that the threat of overfitting with this
procedure was very low.5

A second step we can take to avoid overfitting is to split the pre-treatment time
series in half (after differencing). For simple parametric models, we can use the first
half of the time series to select a model specification and the second half to fit the model.
For machine learning estimators, we could use the first half to fit the model and use
the second half as inputs to the fitted model. In Section B, I showed results from three
model-selection-and-estimation strategies. Full uses the entire pre-treatment series to
both select and estimate the model; Split uses the first half of the pre-treatment series
to select the model and the second half to fit the model; Split Analysis, Full Estimation
(SAFE) uses the first half to select the model and the full pre-treatment set to fit the
model (Faraway, 2016).

The main analysis in the paper uses the Full approach for two reasons. First,
simulations suggested using the full time series improves predictive accuracy without
harming inference (see Section F below). Second, repeated placebo tests with small
pre-treatment series suggested conformal prediction intervals were less stable (see Sec-
tion B).

Once we have made our data stationary and taken care to avoid overfitting, we can
forecast into the post-treatment period and estimate the treatment effect. But a prob-
lem remains: our model is likely misspecified, and standard prediction intervals assume
the correct specification for validity. Conformal inference provides a solution to this
problem (Shafer and Vovk, 2008; Lei et al., 2018; Chernozhukov et al., 2021). In the
standard, i.i.d. setting, conformal inference provides exact finite-sample validity under
no assumptions other than exchangeability (implied by i.i.d. data) and estimator sym-
metry (invariant with respect to permutations in the data). In the time series setting,
where data points exhibit dependence, we require more assumptions, and we achieve
only approximate finite-sample validity. However, these assumptions are weaker than
those required for conventional prediction intervals, which lack finite-sample guaran-
tees. I employ Chernozhukov et al.’s (2021) method of permuting blocks of residuals
to compute conformal p-values (see also Chernozhukov et al. (2018)). It should also
be noted that conformal inference is a general procedure: it can be used with complex
machine learning methods that lack default, “model-trusting” prediction intervals.6

The conformal prediction intervals I use are approximately valid in finite samples
under two sets of conditions (Chernozhukov et al., 2021). The first requires a consistent
estimator and stationary, strongly mixing errors. The second requires estimator sta-

4Additional covariates might include measures of temperature and economic indicators. I found
these provided no improvement to basic ARIMA models trained on the time series.

5Some of these simulations are reported in Section F. Many others are unreported but show similar
results.

6I borrow the term “model-trusting” from Buja et al. (2019).

38



bility and that the data (not the errors) are weakly stationary and β-mixing with the
mixing coefficient β satisfying an inequality described in Chernozhukov et al. (2021).
Because I assume all models are misspecified, I focus on the second set of conditions.

Estimator stability requires that forecasts change very little when perturbing a small
handful of observations. Weak stationarity in Xt requires that (i) E[Xt] is independent
of t and (ii) Cov[Xt,Xt+h] is independent of t for each h. This means roughly that
the mean and variance of the time series is constant over time, and it can be violated
by secular trends, seasonality, and abrupt level changes (see Hyndman and Athana-
sopoulos (2018) for a more thorough discussion with visual examples). The stationarity
assumption is made more plausible by differencing the data (although, again, the data
is de-differenced for all the plots).7

Mixing requires that as the distance between two points increases, some measure of
dependence approaches 0—in other words, Xt and Xt+h are asymptotically independent
in h (Mcdonald et al., 2011). The rough intuition is that two time periods that are close
together can be dependent, but time periods that are far apart should be independent.
The β in “β-mixing” refers to a specific measure of dependence. See Bradley (2005) for
formal definitions of different types of mixing, including β-mixing.

Simulations reporting in Section F show that conventional ARIMA prediction in-
tervals undercover under the null, while conformal intervals provide valid coverage and
sometimes overcover. The repeated placebo tests reported in Figure 9 in the main pa-
per, however, suggest that conformal intervals may still undercover in this particular
setting.

E.2 How Conformal Inference Works

I illustrate how conformal inference works visually in Figure E.2 and Figure E.3 and
formally below.

Let T represent the length of the full time series and T0 represent the final pre-
treatment period. Suppose we have a single pre-treatment period such that T0 = T −1.
We first fit a model to the series of pre-treatment outcomes Y = Y1,Y2, . . . ,YT0 . The
goal is to obtain a prediction interval for YT , the post-treatment period. The first
step in obtaining conformal prediction intervals is computing a conformal p-value for a
candidate value for YT . Call this candidate value Y

∗
T . Augment the pre-treatment time

series with Y ∗
T such that we now have the series Y∗ = Y1,Y2, . . . ,YT0 ,Y

∗
T .

Refit the forecasting model to the augmented series Y∗ and compute the absolute
residuals ût = |ϵ̂t|. Let R be the vector of absolute residuals û1, û2, . . . , ûT , where ûT

is the absolute residual for Y ∗
T . The conformal p-value is the proportion of absolute

residuals in R that ûT is less than or equal to:

7More exactly, ARIMA automatically differences the data for estimation and then de-differences or
integrates the fitted values.
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p =
1

T

T∑

t=1

1(ûT ≤ ût),

where 1() is the indicator function. Because R contains ûT , the p-value can never be
0, as 1(ûT ≤ ûT ) = 1. Figure E.2 illustrates this procedure.
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1. Select a forecasting model using
only the pre-treatment series

2. Augment the series with a
candidate post-treatment value Y ∗

T

3. Fit the selected model to the augmented
series and compute the absolute

residuals |ϵ̂t | = ût

4. Calculate the conformal p-value as the
proportion of all residuals that the post-

treatment residual is less than or equal to
p = 1

T

∑T
t=1 1(ûT ≤ ût) =

1
62

≈ 0.016
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Figure E.2: Grid of plots illustrating how to calculate a conformal p-value for a candidate value for YT , denoted Y ∗
T . Here Y

∗
T = 11, 000. Note

that the set of all residuals includes the residual for Y ∗
T , ϵ̂T .
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Y ∗
T = 11,000, p = 1

62
≈ 0.016 Y ∗

T = 9,900, p = 8
62

≈ 0.13

Y ∗
T = 9,700, p = 19

62
≈ 0.31 Y ∗

T = 9,300, p = 39
62

≈ 0.63
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Figure E.3: Grid of plots illustrating a test inversion procedure for generating conformal prediction intervals. For each candidate value Y ∗
T ,

we refit the predictive model and calculate a new p-value. The prediction interval contains all values of Y ∗
T for which p > α, where α represents

the desired probability of falsely rejecting the null hypothesis.
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Period Residual Score

1 −0.36

2 0.33 .39

3 0.48 .32

4 −0.18 .31

5 0.27 .36

T 0.63 .42

1 −0.36 .44

2 0.33

Figure E.4: Toy example illustrating the overlapping block scheme for conformal inference. We have
five pre-treatment periods (t = 1, 2, 3, 4, 5) and one post-treatment period (t = T ). The nonconformity
score is the mean absolute residual from 3 consecutive periods, with lower values indicating the period
better conforms to the model. To calculate a conformal p-value for the treatment period, we calculate
the proportion of scores (including both blue and orange scores) that the the orange score is less
than or equal to. In this example, the orange score is only less than or equal to 1 out of 6 scores
(itself), making the p-value 1/6 = 0.16.

A word of caution about using conformal inference with ARIMA models. An
ARIMA model will automatically difference and un-difference (i.e., integrate) the data.
When we difference data, the initial observations will become missing. I.e., if we first-
difference a time series beginning on January 2006, we will lack a first-differenced ob-
servation for January 2006. ARIMA software will nonetheless return residuals for these
missing observations that are extremely close to zero. These should be removed from
the set of residuals when conducting conformal inference.

Once we know how to calculate conformal p-values, we can obtaining conformal
prediction intervals through test inversion. We consider a fine grid of candidate values
for Y ∗

T and calculate p-values for each value in the grid. The interval consists of all values
of Y ∗

T for which p > α, where α represents the desired probability of falsely rejecting
the null hypothesis. Figure E.3 illustrates this procedure with four candidate values for
Y ∗
T . In practice, I use the sequence of values ŶT −2,000, ŶT −1,999, . . . , ŶT +1,999, ŶT +

2,000 to generate prediction intervals.8 Confidence intervals on the treatment effect

8For the repeated placebo test procedures, I sometimes had to expand the width of this grid. In
general, it is good practice to check whether the lower or upper limit of the prediction interval is equal
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are obtained by subtracting the upper and lower limits of the prediction interval as in
(Chernozhukov et al., 2021).

These prediction intervals are valid with i.i.d. data. In order to generate prediction
intervals for dependent data, I use blocks of residuals rather than individual residuals
to conduct inference (Chernozhukov et al., 2018), illustrated in Figure E.4. In practice,
I find that these intervals with block sizes greater than 1 are somewhat unstable, so
the main paper reports only intervals with a block size of 1.9 As I show in Section B,
however, confidence intervals and p-values for the treatment effect are very similar with
alternative block sizes.

to the maximum or minimum value in the grid, which would suggest the grid should be wider.
9In Chernozhukov et al. (2018) and Chernozhukov et al. (2021), the authors focus on prediction

intervals using a block size of 1, and reserve the use of larger block sizes for p-value computation only.
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F Sample-Splitting Simulations

This section shows that different model-selection-and-estimation procedures yield sim-
ilar results. The simulated data and selection procedure are specifically tailored to this
study. The simulated time series are monthly and exhibit strong seasonality and trends
over time, just as the observed series of self-harm visits does. Model selection is always
done using the auto.arima() function with no additional covariates (e.g., no weather
or economic predictors), as no other forecasting models and no other covariates were
considered in this study.10 These simulations should not be used to guide general ITS
practice. Instead, they serve to assess how the specific model-selection strategies used in
this study would perform if repeated across many similar settings. Code for replicating
all simulations can be found at https://github.com/cmfelton/13rw.

Time series are simulated using the sarima.sim() function from the astsa pack-
age. The function generates a time series from an ARIMA model given a set of model
parameters and a simulated error distribution. For the results I show below, I use the
specification and parameter estimates from the main model used in the analysis (see
Table B.7). In other, unreported simulations, I used different specifications and param-
eter values, and the results were essentially unchanged. I consider two different sample
sizes and three different error distributions. The first sample size is 135, matching the
length of the time series for this study, and the second is 51, to see whether using a
shorter time series substantively changes the results. I consider errors drawn from a
Gaussian distribution, a uniform distribution, and a t distribution with 3 degrees of
freedom (i.e., a t3 distribution). The latter two will produce time series with more
outliers than the former. In unreported simulations, I drew errors from Laplace and
Cauchy distributions, and the results were essentially the same.

As discussed in Section E.1, I use three different model-selection procedures: Full,
Split, and SAFE. Full uses the entire pre-treatment series to select a model using
auto.arima(), then fits this model specification to the entire pre-treatment time series.
Split cuts the time series in half, using the first half to select a model specification and
the second half to estimate the model parameters. The fitted model used for forecasting
thus uses a series half as long as the series used in Full. I borrow the term SAFE—Split
Analysis, Full Estimation—from Faraway (2016). SAFE uses only the first half of the
time series to select a model (like Split) but the entire pre-treatment time series to fit
the model (like Full).

I find that Full yields greater predictive accuracy than Split or SAFE without
invalidating inference. Conformal inference with Split is always more conservative than
with Full or SAFE—that is, Split tends to slightly overcover. This may have more to
do with the sample size than the selection procedure, however. As Lei et al. (2018)
prove (in the i.i.d. setting), conformal inference can overcover in small samples, and
the coverage can be bounded by 1 − α + 1

n+1
. (E.g., when n = 99, 95% conformal

10In other, unreported simulations, I selected autoregressive models with covariates using AIC-guided
step-wise selection, where most or all of the covariates are irrelevant. Results were essentially the same.
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intervals will cover the truth at most 96% of the time because 1 − .05 + 1
99+1

= .96.
When n = 49, they might cover the truth up to 97% of the time.) Furthermore, Full
with n = 51 overcovers more than Split with n = 135 when errors are Gaussian.

The simulations also suggest that conformal inference provides better coverage than
conventional ARIMA intervals, although the improvements are modest. Note also that
the assumptions required for conformal validity are satisfied by design in the simula-
tions, but they may not hold in the real world.

The simulation results provide some evidence that, in this study, confidence intervals
from Split are slightly more conservative and that effect estimates from Full are slightly
more accurate. As shown in Figure B.1, results estimated treatment effects and their
confidence intervals remain largely unchanged across selection procedures.

Approach MSE RMSE
ARIMA Conformal

p < .05 p < .05 p < .1 p < .2

Full 1.0442 1.0219 0.0606 0.0488 0.1024 0.1974

Split 1.0801 1.0393 0.0646 0.0454 0.0866 0.1880

SAFE 1.0475 1.0235 0.0646 0.0468 0.1008 0.1922

Table F.1: Gaussian errors, n = 135.

Approach MSE RMSE
ARIMA Conformal

p < .05 p < .05 p < .1 p < .2

Full 1.0656 1.0323 0.0652 0.0378 0.0966 0.1992

Split 1.3259 1.1515 0.0628 0.0362 0.0698 0.1738

SAFE 1.3038 1.1418 0.0628 0.0390 0.0962 0.1904

Table F.2: Gaussian errors, n = 51.

Approach MSE RMSE
ARIMA Conformal

p < .05 p < .05 p < .1 p < .2

Full 2.5200 1.5875 0.0534 0.0432 0.0964 0.1946

Split 2.6685 1.6335 0.0610 0.0396 0.0874 0.1918

SAFE 2.5475 1.5961 0.0610 0.0424 0.0958 0.1966

Table F.3: t3 errors, n = 135.
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Approach MSE RMSE
ARIMA Conformal

p < .05 p < .05 p < .1 p < .2

Full 3.3814 1.8389 0.0714 0.0396 0.1018 0.2034

Split 4.0660 2.0164 0.0766 0.0378 0.0764 0.1928

SAFE 3.7094 1.9260 0.0766 0.0406 0.1006 0.2022

Table F.4: t3 errors, n = 51.

Approach MSE RMSE
ARIMA Conformal

p < .05 p < .05 p < .1 p < .2

Full 0.1471 0.3835 0.0482 0.0498 0.0982 0.2040

Split 0.1523 0.3903 0.0512 0.0476 0.0916 0.1962

SAFE 0.1486 0.3854 0.0512 0.0464 0.1022 0.2032

Table F.5: Uniform errors, n = 135.

Approach MSE RMSE
ARIMA Conformal

p < .05 p < .05 p < .1 p < .2

Full 0.1563 0.3953 0.0644 0.0464 0.1136 0.2102

Split 0.1686 0.4106 0.0606 0.0430 0.0796 0.1992

SAFE 0.1657 0.4071 0.0606 0.0460 0.1102 0.2042

Table F.6: Uniform errors, n = 51.
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G Anticipation Effects

This section formalizes the idea of anticipation effects in ITS designs and clarifies why
it is problematic. The discussion has two key takeaways. First, in the presence of
anticipation effects, estimating the average treatment effect is infeasible, and we must
instead target alternative causal estimands. Second, to identify these alternative causal
effects, we can use multi-step-ahead forecasting, beginning our forecast prior to the
onset of anticipation effects.

We can begin by describing the onset of the promotional period as a separate treat-
ment from the show’s release. Let At represent an indicator for whether the promotional
period for 13 Reasons Why began in time t, and letDt represent an indicator for whether
the show was released in time t. We can now describe potential outcomes as a function
of both treatments. Yt(At = 1,Dt = 1), for instance, represents the potential outcome
in time t when both the promotional period and show’s release occur in time t. That
is, it represents the outcome we would observe had both the promotional period and
show occurred in the same period. Finally, let Āt = 0 (D̄t = 0) indicate that the unit
has never experienced treatment A (D) as of time t. Yt(At = 1, D̄t = 0), for instance,
represents the outcome we would observe in time t if both (i) the promotional period
had began in time t and (ii) the show had not yet been released as of time t.

We typically define the causal effect of the show’s release at time t as Yt(Dt =
1) − Yt(Dt = 0). But when we allow potential outcomes to be a function of two
treatments, this effect is no longer well-defined. Instead, we can consider the following
causal contrasts of interest:

1. Yt(At−1 = 1,Dt = 1) − Yt(At−1 = 1, D̄t = 0): the effect of releasing the show in
time t having already started promoting the show in time t− 1.

2. Yt(At−1 = 1,Dt = 1) − Yt(Āt = 0, D̄t = 0): the effect of promoting the show in
time t − 1 and the show in time t relative to having never promoted or released
the show.

Both causal effects correspond to realistic interventions. In the first setting, we
can imagine delaying (or cancelling) the release of the show having already started
promoting it. In the second case, we can imagine intervening to prevent the production
of the show altogether.11

Identifying the first causal effect, however, is infeasible: it would require imputing
the potential outcome Yt(At−1 = 1, D̄t = 0)—that is, the outcome we would observe in
time t if (i) the promotional period began in time t − 1 but (ii) the show had not yet
been released as of time t. The problem is we have no observations for which At−1 = 1

11We might be tempted to ask about the effect of the show having never promoted it, Yt(Āt =
0,Dt = 1)− Yt(Āt = 0, D̄t = 0), but this is an unrealistic intervention because studios almost always
release trailers before releasing movies and series. It is also worth noting that the effects of promotion
and the show itself are not necessarily additive: promoting the show might cause more people to watch
the show when it comes out, which would in turn produce stronger contagion effects.
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and D̄t = 0: the show was released one month after the trailer began airing. The only
observation for which At−1 = 1 is the post-treatment period T for which Dt = 1.

We can, in contrast, estimate the second causal effect: the combined effect of releas-
ing the show in period t and promoting it in period t− 1 relative to the counterfactual
in which we release neither. The reason we can estimate this effect is we have many
periods during which neither the show nor trailer had been released (i.e., all pre–March
2017 periods).

The problem of anticipation effects now becomes clearer. YT−1 no longer represents a
potential outcome under control Yt(Āt = 0, D̄t = 0). Instead, it represents the potential
outcome under the release of the trailer but not the show: Yt(At = 1, D̄t = 0).

Period T − 1, then, poses two problems for us. First, using YT−1 to select a model
might select a worse model for the potential outcomes under control Yt(Āt = 0, D̄t = 0).
Second, even if the observation is not used to select a model, an autoregressive model
will use YT−1 to forecast YT . Our model is built to forecast potential outcomes under
control Yt(Āt = 0, D̄t = 0) using Yt−1(Āt−1 = 0, D̄t−1 = 0), but now we are forecasting
the potential outcome under control using Yt(Āt = 1, D̄t = 0).

A simple solution to the problem, then, is to use multi-step-ahead forecasting to im-
pute Yt(Āt = 0, D̄t = 0) for the post-treatment period, beginning the forecasting period
before anticipation effects occur, and without using periods plagued by anticipation
effects to select the model. Refer to Section 7.1 in the main paper for results.
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