

Supplement to:

Morgan, Stephen L. 2021. "Prejudice, Bigotry, and Support for Compensatory Interventions to Address Black–White Inequalities: Evidence from the General Social Survey, 2006 to 2020." Sociological Science 9: 1-26.

Supplement

In this Supplement, I first offer detail on the data, racial attitude items, and scaling procedures used in the analysis. I then offer additional results that extend the analysis, following the order of results in the main text. All tables are presented at the end of the Supplement.

Data and Weighting

The sampling design for the 2006-2018 General Social Survey is detailed in Smith et al. (2019). Davern et al. (2021) provide a comprehensive explanation of why and how the 2016 and 2018 GSS respondents were followed up in an unplanned web and phone panel survey in August and September of 2020 (in lieu of conducting a new face-to-face GSS study from April through August of 2020 during the COVID pandemic).

For models in this article that use only data from 2006-2018, I used a slightly modified version of the GSS recommended non-response weight, WTSSNR. First, I scaled the weight so that each year of data would count equally in any model where the years are pooled. Second, I scaled the weights to correct for differential non-response by gender because the GSS, like most surveys, over-represents women.¹

For models that use data from the 2020 GSS follow-up, I developed a custom weight for the 2020 data. I started with the weights above for the 2016 and 2018 cases. I then used the same strategy explained in Morgan and Lee (2020) to construct attrition-adjusted weights for the respondents who participated in the 2020 survey.² One key change, taken in light of concerns about differential non-response by political party during the 2020 election season, was to enlarge the set of attrition predictors. In addition to all those used for Morgan and Lee (2020), I included base-year party identification and political ideology. I then used an estimated "in scope" probability of participating in the 2020 survey to construct a ratio adjustment to the 2020 base weight (i.e., the scaled version of each respondent's 2016 or 2018 base weight). Finally, I scaled the resulting weights so that the base year 2016 cases would contribute the same amount of information as the base year 2018 cases, following the rationale of Davern et al. (2021; see page 21).

¹All years are scaled so that women are 51.56 percent of the analysis sample, which is a value estimated from the American Community Survey (see Morgan 2020, Table 3). The true population rate is evolving slowly, but not enough to make a difference for adjustment.

 $^{^2}$ Morgan and Lee (2020) show how to generate weights for the GSS panels from 2006-2014. I do not use that panel data in this article, but I adopt the same basic modeling approach to estimate attrition for the 2020 cases.

Racial Attitude Items and Scales

Table S1 (see tables at the end of this Supplement) presents the wordings of all racial attitude items. The GSS has three randomly assigned questionnaires (Ballots A, B, and C). Most items in the core are present only on two of the ballots, and most of the racial attitudes are on Ballots A and B. But some items are present on AC and BC combinations of ballots. Inclusion in the scales used in the main text is indicated in the final column, and detailed in the next section.

Scale Construction

The results in Tables 1 and 2 use the raw items detailed in Table S1. However, Tables 3 through 5 use the scales explained in this section.

For Table 3, I introduce two scales based on Tesler (2016). He details two scales in the Online Appendix of his book:

Old Fashioned Racism (GSS): A five-category difference score, which subtracts how favorable or unfavorable white respondents would react to a close relative marrying an African-American from how favorable they would feel about their relatives marrying someone of the same race, recoded from 0 (no in-marriage preference) to 1 (strongly favor relative marry a white partner and strongly oppose a black spouse). (Tesler 2016, Online Appendix, Page 2)

Racial Resentment (GSS): An additive index recoded from 0 (least resentful) to 1 (most resentful): The scale was constructed from responses to the following 4 items: 1) Irish, Italian, Jewish and many other minorities overcame prejudice and worked their way up. Blacks should do the same without any special favors. 2) A 3-category variable indicating whether respondents said lack of motivation is or is not a reason for racial inequality (don't know responses are coded to the midpoint. 3) A 3-category variable indicating whether respondents said discrimination is or is not a reason for racial inequality (don't know responses are coded to the midpoint 4) A three-category variable indicating whether respondents rated whites more, less or equally hardworking than blacks on 7-point stereotype scales (don't know responses were coded as 4 for both groups). (Tesler 2016, Online Appendix, Page 3)

For old fashioned racism, I constructed the scale using MARBLK and MARWHT (see Table S1), creating a five-category difference score just as Tesler (2016) did. For racial resentment, I used the same five variables as Tesler, WRKWAYUP, RACDIF1, RACDIF4, and the difference between WORKWHTS and WORKBLKS (see Table S1). However, for consistency with the other scales, detailed below, I used a graded response IRT model for scale construction, after which I standardized the scale to have a variance of 1 over the full 2006-2020 sample.

For Table 4, I analyzed the racial resentment scale again, as well as two new scales that correspond to the differentiation of substance across Tables 1 and 2, one for prejudice and

bigotry and one for opposition to compensatory support. The scale for prejudice and bigotry includes five items from Tables 1: INTLWHTS, INTLBLKS, MARBLK, RACDIF2, and RACDIF4 (see Table S1 for wordings). The scale for opposition to compensatory support includes all four items from Table 2: AFFRMACT, WRKWAYUP, HELPBLK, and DISCAFF (again, see Table S1). As for my version of Tesler's racial resentment scale, I used graded response IRT models for scale construction, after which I standardized each scale to have a variance of 1 over the full 2006-2020 sample.

To check for the robustness of results on period effects, I estimate additional models below. For Table S11, I expand the scale for prejudice and bigotry to 11 items, adding RACDIF1, RACDIF3, MARASIAN, MARHISP, LIVEBLKS, and LETNIN1A (see Table S1). I also drop two items from the scale for opposition to compensatory support, so that it includes only AFFRMACT and WRKWAYUP. Finally, in Table S12, I offer period-effect estimates for most of the indicators separately. The results are all consistent, as noted in the next section.

Supplemental Results

Racial resentment regressions. Tables 52-54 extend the analysis reported in the main text in Table 3. Rather than restrict the analysis to the 2010 through 2018 GSS data, the results in in these three tables vary the years that are included. Overall, the findings are similar. As years are added, the results for party identification strengthen. The support is slightly weaker for the claims in the main text for the models focused solely on retrospective votes for 2012 and 2016 in Table S4 (reported, respectively, in 2014 and 2018). The weakening may simply be the result of greater relative sampling error because of the smaller sample size for those models, but it could also be the case that the increase is clearer over a larger number of years because the trend is a general one, not one that is narrowly revealed by a targeted comparison of vote choices for the 2012 to 2016 general elections.

Models for change, with a full explanation of the strategy for adjusting for baseline change through cohort replacement. In this section, I explain the first 3 steps of the analysis design that I adopt to model change in racial attitudes. I use Tesler's racial resentment scale in order to demonstrate the steps. I also offer results for a wider range of race-ethnic groups than modeled for the results in the main text. After detailing the approach with racial resentment, I consider alternative outcomes.

The first three columns of Table S5 present alternative baseline demographic models for change in the racial resentment of white respondents from 2006 to 2012. The next three columns present models for Hispanic respondents to provide a point of comparison. Table S6, below, provides the same analysis for the other two race-ethnic groups analyzed for Tables 1 and 2. I will provide the full explanation for white respondents, as they are the main focus of the analysis reported in the main text, but the strategy deployed in Tables S5 and S6 is the same for all four groups.

Model 1 includes indicators for gender, educational attainment, and social class. Focusing only on white respondents for now, the associations show that education and class both predict racial resentment, as complements to each other. Gender has little or no association with racial resentment, net of education and class.

Model 2 adds a regressor for birth cohort, specified as the year in which each respondent was born (centered on 1971 and divided by 10 for interpretability). The negative coefficient suggests that more recent cohorts have net lower levels of racial resentment. A two-decade difference in birth year is associated with a net difference of 0.144 standard deviations in racial resentment.

While such net between-cohort characterizations are correct interpretations, Model 2 was not specified in an attempt to generate a best-fitting representation of how racial resentment varies with the full cohort structure of the GSS from 2006 to 2012. That full predictive surface is surely not captured sufficiently well by a linear-in-birth-year regressor (with a coefficient estimated alongside others for gender, educational attainment, and class). Instead, the goal of Model 2 is to model the changes across the years of observation from 2006 through 2012 that are due to cohort replacement, using a regressor that can be extrapolated to generate a counterfactual fit for the 2014-2020 interval.

Thus, the negative coefficient for the cohort predictor should not be over-interpreted. The specification implies that the outcome, racial resentment, is changing linearly, on average, in response to the shifting composition of birth cohorts, which push the average birth year higher over time. The cohort replacement shift can be thought of as an encoding of all cohort differences, as they pass through the observation interval. For example, in each year of observation, a higher percentage of the sample is composed of individuals whose formative early adulthood years occurred after the most prominent events of the civil rights movement, and Model 2 shows that racial resentment declines linearly as these individuals become a larger overall percentage of the GSS sample.

Model 3 then shows that this strategy works sufficiently well for white respondents. To the specification for Model 2, I add the year of GSS observation as a linear term. The resulting coefficient has little or no net association with racial resentment when specified alongside gender, education, class, and birth year. Moreover, the negative birth-year coefficient is reduced only to a trivial extent. Thus, Model 3 suggests that Model 2 alone captures the underlying trend between 2006 and 2012 sufficiently well. And that change, as shown below, can form the basis for a counterfactual trend between 2014 and 2020, as if nothing more than upgrading in education, class, and cohort replacement were occurring.³

³ For readers familiar with the identification challenges associated with the age-period-cohort accounting model, the claim here is that for this observation interval from 2006 to 2012, the period effect is ignorable once a cohort effect has been specified (and in this case, a very simple linear-in-birth-year cohort effect). Moreover, I take the epidemiological position on cohort analysis that cohort effects carry forward entangled past age and period effects into the observation interval.

The equivalent models for Hispanics in Table S5 and for non-Hispanic blacks in Table S6 provide side support for this modeling approach. While the pattern of associations for education and class is somewhat different for these groups, and while the cohort terms suggest different patterns of net change beyond shifts in education and class, the year of observation coefficients in Model 3 again have little or no net predictive power.

Finally, the year of observation coefficient for the last set of models for Asians in Table S6 is more negative. While I expect that this is due to chance variability because of the many coefficients fit for a smaller sample, the results for Asian respondents may provide some suggestive evidence for a period effect between 2006 and 2012 for Asians that cannot be captured by cohort replacement or by shifts in education and class position. It is possible that additional regressors for ethnic origins, resulting from variation in immigration patterns, need to be fit in order to account for what appears to be genuine period variation.

Table S7 then presents models of change in racial resentment for the full 2006 to 2020 interval, limited to white respondents only. The first column presents a model of raw change, which fits indicators for each GSS year, deviated from 2012, to the raw racial resentment scale. These "raw" results are the same ones presented in Table 4 in the main text. As discussed in the main text, the changes shown for the indicators for 2014, 2016, and 2018 indicate that racial resentment declined over these six years, on average, by more than one third of a standard deviation.

Note also that for this model a coefficient is fit for 2020, and it suggests a modest further continuation in the decline of racial resentment. This change is discussed briefly in the main text, and, in this Supplement, I provide a more complete explanation.

As noted above in the Data section, the GSS project launched an unanticipated follow-up study in 2020, which was made necessary because the COVID pandemic disrupted the plan to conduct a fresh cross-sectional survey through face-to-face interviewing in spring and summer of 2020. Instead, respondents who were first sampled in 2016 and 2018 were asked to complete a follow-up survey by phone or web, covering all core items from the GSS, including the racial attitudes in Table S1.

Most of the data collection for the 2020 follow-up was completed in the late summer and early fall. Thus, we have available a unique set of observations available for 2020, and for the models in Table S7 these observations are added to the sample for analysis. The 2020 observations for individuals from the original 2016 and 2018 cross-sectional surveys are weighted for analysis to (a) adjust for non-random attrition from the respective base year and (b) so that the 2020 estimates are based on variation that is equally balanced across respondents sampled in 2016 and 2018 (see above for an explanation of the weight construction). The inclusion of the 2020 observations in the first model in Table S7 does not change any of the coefficients for the other years, since all years are deviated from 2012 and the inclusion of 2020 observations are irrelevant to these comparisons. Thus, the inclusion of the 2020 observations is best seen as a separable augmentation of the model, which provides additional evidence of a further decline in racial resentment among white respondents in 2020.

The next three columns of Table S7 then have the same specification of year predictors but for a residualized version of the racial resentment scale. I subtracted predicted values generated by the coefficients of Models 1 through 3 in Table S5 from the raw racial resentment scale. For 2006 through 2012, the predicted values are those values that are directly fit by the model. For 2014 through 2020, the predicted values are extrapolated counterfactual values (i.e., the dot product of the coefficients from Models 1 through 3 with the vector of predictors observed in years 2014 through 2020). Residualization with the estimated parameters of Model 2 is the most sensible, as explained above, and thus the residualizations provided by Models 1 and 3 are provided for comparison only. The Model 2 results show that net deviations of racial resentment before 2012 are negligible, relative to the underlying change model that has been directly fit for these years. The motivation of the model is to enable an examination of the decline in racial resentment after 2012. As can be seen in a comparison of the coefficients from the first and third columns, most of the raw change after 2012 remains unaccounted for. Accordingly, the net change after residualization with Model 2 can be interpreted as an emergent period effect that cumulated from 2014 through 2020 (i.e., above and beyond the baseline change that is attributable to cohort replacement).

The three final columns of Table S7 repeat the same analysis, dropping respondents in 2016 and 2018 who did not participate in the 2020 follow-up survey. The weights are adjusted accordingly (by applying the attrition weights to the 2016 and 2018 observations, rather than only the 2020 observations). The effective sample size declines, and only the 2016 and 2018 coefficients have scope to change. And they change only very slightly. This model gives evidence of an average within-person decline in racial resentment by 2020 for respondents sampled in both 2016 and 2018 and suggests that the models in the prior three columns are reasonable because the attrition weighting is effective more generally.

Table 4 in the main text displays the results in the first and third columns in Table S7. Tables S8 – S10 repeat the analysis in Table S7 for the additional three race-ethnic groups and thus extend the results presented in the main text. After 2012, movement is generally toward the racial sympathy pole for all three groups, but the extent of that movement depends on whether residualization with Model 2 or Model 3 is utilized. For the same reason, movement before 2012 is also more heterogeneous. Overall, the declines in racial resentment for these three groups are also consistent with my favored interpretation: a broad cumulative response to the activism associated with the movement for racial justice.

Table 4 in the main text adds two additional scales as outcomes, with the underlying residualization explained above used to structure analogous models. Table S11 presents the

same results from Table 4 for these two scales, along with alternative versions of those scales (detailed above). The results are generally the same, and I chose to use the versions of the scales in Table 4 in the main text because they were (a) most consistent with theories about anti-black racism and (b) have comparable numbers of items as the racial resentment scale. Thus, they are targeted on the same domain and generated by similar amounts of between-respondent variation.

Of course, none of these scales may be convincing to the reader. Accordingly, I provide in Table S12 indicator-specific models for period effects. The same patterns are present, and one value of the indicator-specific models are the metric coefficients that show absolute change.

Finally, Table S13 is a direct analog to Table 5 in the main text, but it drops the 2006 and 2008 data and also adds the 2020 follow-up observations. The results are very similar, as expected, based on the similarity shown earlier in comparisons to Table 3.

GSS variable	Question wording	Response categories	Ballots	Scale inclusion
Attribution of black-white differences:	On the average blacks have worse jobs, income, and housing than white people.			
	Do you think these differences are			
RACDIF1	Mainly due to discrimination?	Yes No	AB	RR and PB 11-item
RACDIF2	Because most blacks have less in- born ability to learn?	Yes No	"	PB 5-item and PB 11- item
RACDIF3	Because most blacks don't have the chance for education that it takes to rise out of poverty?	Yes No	"	PB 11-item
RACDIF4	Because most blacks just don't have the motivation or will power to pull themselves up out of poverty?	Yes No	"	RR, PB 5-item, and PB 11-item
Support for affirmative action:	Some people say that because of past discrimination, blacks should be given preference in hiring and promotion. Others say that such preference in hiring and promotion of blacks is wrong because it discriminates against Whites.			
AFFRMACT	What about your opinion – are you for or against preferential hiring and promotion of blacks? (with alternative follow-up questions for strongly or not strongly favor or oppose)	Strongly favor Favor Oppose Strongly oppose	AB	OCS 2-item and OCS 4-item
Favors needed to overcome prejudice:				
WRKWAYUP	Do you agree strongly, agree somewhat, neither agree nor disagree, disagree somewhat, or disagree strongly with the following statement: Irish, Italians, Jewish and many	Agree strongly Agree somewhat Neither agree nor disagree Disagree somewhat Disagree strongly	"	RR, OCS 2-item, and OCS 4-item
	other minorities overcame prejudice and worked their way up. Blacks	2 07		

Table S1. Wording and response options for items on the GSS from 2006 to 2020 that measure racial attitudes toward African-Americans and black people (in order on questionnaire)

	favors.			
Believe in bigoted stereotypes:	Now I have some questions about different groups in our society. Here is a seven-point scale on which the characteristics of people in a group can be rated.			
INTLWHTS and INTLBLKS (preceded by parallel items for a rich - poor scale in order to introduce the response scales)	A score of 1 means that you think almost all of the people in the group are 'unintelligent.' A score of 7 means that you think almost everyone in the group is 'intelligent.' A score of 4 means that you think that the group is not towards one end or the other, and of course you may choose any number in between that comes closest to where you think people in the group stand. Where would you rate whites in general on this scale? Blacks?	Two 7-point scales from 1 for unintelligent to 7 for intelligent, coded as INTLWHTS minus INTLBLKS	AB	PB 5-item and PB 11- item
WORKWHTS and WORKBLKS	The second set of characteristics asks if people in the group tend to be hard-working or if they tend to be lazy. Where would you rate whites in general on this scale? Blacks?	Two 7-point scales from 1 for hard working to 7 for lazy, coded as WORKWHTS minus WORKBLKS	AB	RR
Residential integration: LIVEBLKS	Now I'm going to ask you about different types of contact with various groups of people. In each situation would you please tell me whether you would be very much in favor of it happening, somewhat in favor, neither in favor nor opposed to it happening, somewhat opposed, or very much opposed to it happening. Living in a neighborhood where half of your neichbors are Blacks?	Very much in favor Somewhat in favor Neither in favor nor opposed Somewhat opposed Very much opposed	u	PB 11-item

should do the same without special

Intermarriage:	Now I'm going to ask you about another type of contact with various groups of people.			
MARWHT	What about having a close relative marry a white person? Would you be very in favor of it happening, somewhat in favor, neither in favor	Very much in favor Somewhat in favor	AB	PB 5-item and PB 11- item
	somewhat opposed to it happening, somewhat opposed, or very opposed to it happening?	nor opposed Somewhat opposed	"	
MARBLK	What about having a close relative marry a black person?	Very much opposed	"	PB 11-item
MARASIAN	What about having a close relative marry an Asian American person?		"	PB 11-item
MARHISP	What about having a close relative marry a Hispanic or Latino person?			
Reverse discrimination:				
DISCAFF	What do you think the chances are these days that a white person won't get a job or promotion while an equally or less qualified black person gets one instead? Is this very likely, somewhat likely, or not very likely to happen these days?	Very likely Somewhat likely Not very likely	AC	OCS 4-item
Support for immigration:				
LETIN1A	Do you think the number of immigrants to America nowadays should be ?	Increased a lot Increased a little Remain the same as it is Reduced a little Reduced a lot	AB	PB 11-item
Government assistance:				
HELPBLK	Please look at the hand card. Some people think that blacks have been discriminated against for so long that the government has a special obligation to help improve their living standards. Others believe that the government should not be giving special treatment to blacks.	5-point scale from "strongly agree that the government is obligated to help blacks" to "strongly agree that the	BC	OCS 4-item

Where would you place yourself on this scale, or haven't you made up your mind on this? government shouldn't give special treatment"

Notes: The scale acronyms are RR fop racial resentment, PB for prejudice and bigotry, and OCS for opposition to compensatory support.

Table S2 (for comparison with Table 3). Results from twelve least squares models of change in the net predictive power of measures of old-fashioned racism and racial resentment for white-only, non-Hispanic respondents (for 2006 – 2018, rather than 2010 – 2018, as in Table 3)

	Outcome:		Outcome:		
	Party Identification Scale (1 for Strong Democrat to 7 for Strong Republican)		Voted for Presidentia (1 = Yes	Republican 11 Candidate 5, 0 = No)	
Predictor (in separate models)	First period regression coefficient (2006-2014)	Difference for second period (2016-2018)	First period regression coefficient (2006-2014)	Difference for second period (2016-2018)	
Old-fashioned racism (5 category scale, MARWHT and MARBLK)	0.184 (0.028)	0.070 (0.053)	0.069 (0.007)	-0.009 (0.023)	
Racial resentment scale (indicators below)	0.537 (0.036)	0.247 (0.057)	0.173 (0.010)	0.075 (0.019)	
Items in racial resentment scale: Discrimination responsible for black-white differences (RACDIF1)	-0.849 (0.078)	-0.499 (0.139)	-0.263 (0.024)	-0.190 (0.052)	
Lack of motivation among blacks responsible (RACDIF4)	0.582 (0.073)	0.399 (0.126)	0.208 (0.022)	0.172 (0.047)	
No special favors for blacks (WRKWAYUP reversed)	0.421 (0.030)	0.152 (0.047)	0.131 (0.009)	0.038 (0.017)	
Blacks less hard working and more lazy than whites (WORKBLKS, WORKWHTS)	0.095 (0.028)	0.129 (0.055)	0.046 (0.008)	0.041 (0.022)	

Table S3 (for comparison with Table 3). Results from twelve least squares models of change in the net
predictive power of measures of old-fashioned racism and racial resentment for white-only, non-
Hispanic respondents (for 2010 – 2020, rather than 2010 – 2018, as in Table 3)

	Out	come:	Outcome:		
	Party Identi (1 for Stror to 7 for Stror	ification Scale ng Democrat ng Republican)	Voted for Republican Presidential Candidate (1 = Yes, 0 = No)		
Predictor (in separate models)	First period regression coefficient (2010-2014)	Difference for second period (2016-2020)	First period regression coefficient (2010-2014)	Difference for second period (2016-2020)	
Old-fashioned racism (5 category scale, MARWHT and MARBLK)	0.241 (0.042)	-0.005 (0.062)	0.080 (0.009)	-0.031 (0.018)	
Racial resentment scale (indicators below)	0.594 (0.047)	0.295 (0.063)	0.196 (0.012)	0.075 (0.016)	
Items in racial resentment scale:					
Discrimination responsible for black-white differences (RACDIF1)	-0.918 (0.097)	-0.786 (0.141)	-0.297 (0.031)	-0.235 (0.044)	
Lack of motivation among blacks responsible (RACDIF4)	0.704 (0.095)	0.419 (0.144)	0.238 (0.029)	0.154 (0.049)	
No special favors for blacks (WRKWAYUP reversed)	0.455 (0.035)	0.206 (0.047)	0.150 (0.010)	0.049 (0.014)	
Blacks less hard working and more lazy than whites (WORKBLKS, WORKWHTS)	0.117 (0.038)	0.151 (0.061)	0.051 (0.011)	0.065 (0.016)	

Table S4 (for comparison with Table 3). Results from twelve least squares models of change in the net predictive power of measures of old-fashioned racism and racial resentment for white-only, non-Hispanic respondents (for 2014 and 2018, rather than 2010 – 2018, as in Table 3)

	Out	come:	Outcome:		
	Party Identification Scale (1 for Strong Democrat to 7 for Strong Republican)		Voted for Presidentia (1 = Yes	Republican 11 Candidate 5, 0 = No)	
Predictor (in separate models)	First period regression coefficient (2010-2014)	Difference for second period (2016-2020)	First period regression coefficient (2010-2014)	Difference for second period (2016-2020)	
Old-fashioned racism (5 category scale, MARWHT and MARBLK)	0.286 (0.061)	-0.073 (0.087)	0.105 (0.013)	-0.047 (0.023)	
Racial resentment scale (indicators below)	0.605 (0.081)	0.234 (0.098)	0.228 (0.018)	0.019 (0.024)	
Items in racial resentment scale:					
Discrimination responsible for black-white differences (RACDIF1)	-1.116 (0.144)	-0.349 (0.214)	-0.337 (0.043)	-0.112 (0.059)	
Lack of motivation among blacks responsible (RACDIF4)	0.634 (0.149)	0.271 (0.207)	0.280 (0.043)	0.089 (0.057)	
No special favors for blacks (WRKWAYUP reversed)	0.462 (0.064)	0.159 (0.080)	0.162 (0.016)	0.007 (0.021)	
Blacks less hard working and more lazy than whites (WORKBLKS, WORKWHTS)	0.152 (0.055)	0.091 (0.092)	0.084 (0.017)	< 0.001 (0.025)	

Mo	roan
	guii

Table S5. Three least squares models for potential residualization of the underlying change in the racial resentment scale for white-only non-Hispanic respondents and Hispanic, non-black respondents, 2006-2012 pooled sample

pooleu sample						
	White	-only, non-H	ispanic	Hispanic, non-black		
	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3
Gender (Male reference):						
Female	0.005	-0.012	-0.012	-0.034	-0.050	-0.052
	(0.041)	(0.040)	(0.040)	(0.115)	(0.112)	(0.110)
Educational attainment (HS diploma						
No HS diploma	-0.049	-0.090	-0.089	-0.118	-0.132	-0.135
	(0.066)	(0.067)	(0.067)	(0.104)	(0.101)	(0.104)
	· /	· /	· · /	()	()	()
Some college	-0.064	-0.054	-0.056	-0.555	-0.561	-0.567
	(0.060)	(0.062)	(0.062)	(0.374)	(0.376)	(0.388)
Bachelor's degree	-0.411	-0.395	-0.395	-0.405	-0.404	-0.407
	(0.049)	(0.049)	(0.048)	(0.304)	(0.299)	(0.300)
Graduate degree	-0.632	-0.654	-0.655	-1.065	-1.060	-1.046
	(0.075)	(0.074)	(0.075)	(0.277)	(0.276)	(0.274)
EGP social class (Class VIIa ref.):						
1	-0.025	-0.061	-0.060	-0.051	-0.102	-0.104
	(0.086)	(0.085)	(0.085)	(0.354)	(0.356)	(0.361)
п			2 1 2 2	0.007		0.445
11	-0.097	-0.111	-0.109	-0.096	-0.107	-0.112
	(0.074)	(0.073)	(0.073)	(0.229)	(0.225)	(0.224)
IIIa	0.020	0.010	0.010	0.006	0 109	0.102
	(0.030	(0.070)	(0.079)	(0.212)	(0.212)	(0.212)
	(0.070)	(0.070)	(0.070)	(0.213)	(0.213)	(0.212)
IIIb	-0 147	-0.087	-0.087	-0 171	-0 156	-0 157
	(0.074)	(0.074)	(0.074)	(0.143)	(0.139)	(0.140)
	(0.07 1)	(0.07 1)	(0.07 1)	(0.110)	(0.107)	(0.110)
IVab	0.042	0.011	0.012	0.300	0.280	0.273
	(0.078)	(0.078)	(0.078)	(0.217)	(0.218)	(0.215)
	. /	. /	. /	. /	. /	```
IVc	0.155	0.076	0.073	0.023	0.046	0.064

Μ	0	ra	a	n
	v	ı u	u	

	(0.195)	(0.181)	(0.181)	(0.092)	(0.095)	(0.112)
V	0.115	0.111	0.111	-0.083	-0.113	-0.119
	(0.088)	(0.089)	(0.089)	(0.237)	(0.238)	(0.238)
VI	0.252	0.233	0.233	0.418	0.404	0.401
	(0.093)	(0.094)	(0.094)	(0.157)	(0.163)	(0.162)
VIIb	-0 144	-0 146	-0 149	-0.085	-0 123	-0 136
	(0.274)	(0.271)	(0.271)	(0.226)	(0.228)	(0.225)
Military	0 127	0 155	0.140	0 171	0.114	0 107
y	(0.143)	-0.133 (0.144)	(0.149)	(0.588)	(0.574)	(0.586)
Birth cohort, centered on 1971, in						
decades		-0.072	-0.071		-0.044	-0.042
		(0.010)	(0.010)		(0.031)	(0.032)
Year			-0.006			-0.013
			(0.009)			(0.027)
Intercept	0.390	0.331	0.302	0 407	0 417	0.356
-	(0.051)	(0.054)	(0.073)	(0.135)	(0.133)	(0.196)
R-squared	0.082	0 100	0 100	0.007	0.102	0 102
N	0.062	2002	2002	0.097	0.102	0.103
	244.2	3993	3003	/19	/19	/119

 1
 3993
 3993
 3993
 709
 709
 709

 Notes: A small amount of missing data on educational attainment was imputed with random forest imputation. A comparatively large amount of missing data for EGP class was imputed as well, primarily for respondents who reported never having had an occupation. Thus, the EGP class for such respondents is a "what if" class, assuming that these individuals' EGP classes can be predicted reasonably from the joint distribution of observed EGP class with race, gender, education, cohort, and other observed variables in the imputation regime.

Mo	roan
	guii

 Table S6. Three least squares models for potential residualization of the underlying change in the racial resentment scale for black-only non-Hispanic respondents and Asian-only non-Hispanic respondents, 2006-2012 pooled sample

	Black-	Black-only, non-Hispanic Asian-on				nly, non-Hispanic		
	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3		
Gender (Male reference):								
Female	-0.081	-0.059	-0.066	-0.037	-0.037	-0.053		
	(0.102)	(0.106)	(0.106)	(0.172)	(0.170)	(0.166)		
Educational attainment (HS diploma ref.):								
No HS diploma	0.089	0.119	0.118	0.252	0.257	0.250		
	(0.149)	(0.149)	(0.149)	(0.326)	(0.328)	(0.280)		
Some college	-0.005	-0.002	-0.001	0.059	0.062	0 142		
Some conege	(0.201)	(0.200)	(0.197)	(0.588)	(0.584)	(0.439)		
	(0.201)	(0.200)	(0.157)	(0.000)	(0.001)	(0.105)		
Bachelor's degree	-0.347	-0.338	-0.355	0.229	0.238	0.199		
C	(0.219)	(0.214)	(0.215)	(0.274)	(0.293)	(0.291)		
Graduate degree	-0.560	-0.513	-0.547	0.580	0.592	0.603		
	(0.273)	(0.264)	(0.261)	(0.354)	(0.358)	(0.328)		
EGP social class (Class VIIa ref.):								
Ι	-0.365	-0.355	-0.344	-0.660	-0.668	-0.640		
	(0.360)	(0.360)	(0.354)	(0.282)	(0.272)	(0.305)		
П	-0.263	-0.263	-0.249	-0.569	-0.571	-0.556		
	(0.280)	(0.287)	(0.289)	(0.309)	(0.305)	(0.347)		
IIIa	-0.077	-0.089	-0.079	-0.236	-0.239	-0.233		
	(0.183)	(0.184)	(0.185)	(0.186)	(0.179)	(0.225)		
111-	0.050	0.025	0.020	0 191	0.196	0.207		
iiib	(0.146)	(0.152)	(0.152)	-0.161	-0.166	-0.207		
	(0.140)	(0.132)	(0.132)	(0.299)	(0.515)	(0.551)		
IVab	0.004	0.012	0.011	0.012	0.011	0.030		
	(0.201)	(0.203)	(0.200)	(0.530)	(0.525)	(0.451)		
	. ,	. /	. /	. ,	. ,	. ,		
IVc	-0.283	-0.114	-0.057	-0.317	-0.295	-0.149		
	(0.147)	(0.164)	(0.158)	(0.280)	(0.303)	(0.335)		

V	0.125	0.159	0.171	-0.326	-0.328	-0.401
	(0.262)	(0.261)	(0.256)	(0.294)	(0.295)	(0.301)
VI	-0.111	-0.093	-0.100	-0.290	-0.282	-0.199
	(0.366)	(0.353)	(0.359)	(0.833)	(0.841)	(0.631)
VIIb	-0.430	-0.344	-0.342			
	(0.380)	(0.414)	(0.422)			
N Cline a	0.042	0.020	0.001	0.075	0.041	0.115
Military	0.043	0.089	0.091	0.065	0.041	0.115
	(0.501)	(0.501)	(0.480)	(0.387)	(0.362)	(0.411)
Birth cohort, centered on 1971, in decades		0.051	0.047		0.011	0.020
		(0.033)	(0.033)		(0.064)	(0.060)
Year			0.024			-0.068
			(0.029)			(0.038)
Telescol	0.144	0 122	0.015	0.260	0.269	0.017
Intercept	-0.144	-0.133	-0.015	0.369	0.368	0.016
	(0.117)	(0.120)	(0.182)	(0.190)	(0.189)	(0.226)
R-squared	0.063	0.069	0.072	0.062	0.063	0.092
N	774	774	774	171	171	171
	// I	// 1	// 1	1/1	1/1	1/1

mopulito) =	000 2020								
		A	Il respondent	ts	Panel respondents only for 2016-2020				
		Scale	residualized	with	Scale residualized with				
	Raw scale	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3		
2006	0.073	0.065	0.020	-0.014	0.065	0.020	-0.014		
	(0.060)	(0.057)	(0.058)	(0.058)	(0.059)	(0.059)	(0.059)		
2008	0.090	0.078	0.043	0.020	0.078	0.043	0.020		
	(0.061)	(0.057)	(0.057)	(0.057)	(0.058)	(0.059)	(0.059)		
2010	0.015	0.015	-0.010	-0.021	0.015	-0.010	-0.021		
	(0.060)	(0.057)	(0.057)	(0.057)	(0.059)	(0.059)	(0.059)		
2012									
2014	-0.026	-0.016	-0.023	-0.011	-0.016	-0.023	-0.011		
	(0.066)	(0.063)	(0.063)	(0.063)	(0.065)	(0.064)	(0.064)		
2016	-0.212	-0.200	-0.193	-0.169	-0.221	-0.211	-0.187		
	(0.069)	(0.066)	(0.066)	(0.066)	(0.079)	(0.076)	(0.076)		
2018	-0.327	-0.310	-0.294	-0.258	-0.255	-0.240	-0.204		
	(0.072)	(0.069)	(0.068)	(0.068)	(0.084)	(0.082)	(0.082)		
2020									
followup	-0.368	-0.338	-0.317	-0.269	-0.338	-0.317	-0.269		
	(0.075)	(0.071)	(0.071)	(0.071)	(0.069)	(0.068)	(0.068)		
T , ,	0.170	0.040	0.014	0.004	0.040	0.014	0.004		
Intercept	0.173	-0.040	-0.014	0.004	-0.040	-0.014	0.004		
	(0.049)	(0.046)	(0.047)	(0.047)	(0.048)	(0.048)	(0.048)		
R-squared	0.029	0.027	0.021	0.015	0.025	0.020	0.013		
N	7854	7854	7854	7854	6504	6504	6504		

 Table S7. Least squares models for period effects in the racial resentment scale for white-only, non-Hispanics, 2006-2020

More	ban
	quit

		/	11 responden	te	Pane	l respondents	only	
		Scale	residualized	with	Scale residualized with			
	Raw scale	Model 1	Model 2	Model 3	Model 1 Model 2		Model 3	
2006	0.104	0.089	0.072	-0.005	0.089	0.072	-0.005	
	(0.166)	(0.143)	(0.144)	(0.144)	(0.158)	(0.159)	(0.159)	
2008	-0.022	-0.051	-0.064	-0.115	-0.051	-0.064	-0.115	
	(0.144)	(0.122)	(0.122)	(0.123)	(0.135)	(0.136)	(0.136)	
2010	-0.089	-0.114	-0.124	-0.149	-0.114	-0.124	-0.149	
	(0.132)	(0.116)	(0.118)	(0.118)	(0.129)	(0.131)	(0.131)	
2012								
2014	0.052	0.038	0.036	0.008	0.038	0.036	0.008	
2014	-0.032	-0.050	-0.050	(0.159)	-0.050	-0.030	-0.000	
	(0.100)	(0.100)	(0.100)	(0.107)	(0.170)	(0.177)	(0.177)	
2016	-0.203	-0.236	-0.211	-0.157	-0.230	-0.219	-0.163	
	(0.162)	(0.145)	(0.148)	(0.148)	(0.152)	(0.151)	(0.152)	
2018	-0.381	-0.377	-0.362	-0.282	-0.232	-0.206	-0.127	
	(0.149)	(0.139)	(0.139)	(0.139)	(0.149)	(0.149)	(0.149)	
2020 followup	-0 575	-0 614	-0 588	-0 481	-0.614	-0 588	-0.481	
ionowup	(0.195)	(0.184)	(0.182)	(0.182)	(0.171)	(0.168)	(0.169)	
	(0.170)	(0.101)	(0.10-)	(0.102)	(0.17 1)	(0.100)	(0.10))	
Intercept	0.270	0.018	0.027	0.065	0.018	0.027	0.065	
	(0.121)	(0.102)	(0.103)	(0.104)	(0.113)	(0.115)	(0.115)	
R-squared	0.054	0.060	0.054	0.032	0.054	0.049	0.030	
N	1568	1568	1568	1568	1250	1250	1250	

Table S8. Least squares models for period effects in the racial resentment scale for Hispanic, nonblack respondents, 2006-2020

Hispanic respondents, 2006-2020								
	A	.ll respondent	ts	Pane	l respondents for 2016-2020	only		
	Scale	residualized	with	Scale residualized with				
Raw scale	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3		
-0.155	-0.222	-0.192	-0.054	-0.222	-0.192	-0.054		
(0.176)	(0.165)	(0.165)	(0.165)	(0.175)	(0.176)	(0.176)		
-0.072	-0.153	-0.137	-0.045	-0.153	-0.137	-0.045		
(0.203)	(0.185)	(0.184)	(0.184)	(0.198)	(0.196)	(0.196)		
-0.167	-0.267	-0.252	-0.207	-0.267	-0.252	-0.207		
(0.156)	(0.141)	(0.143)	(0.143)	(0.150)	(0.153)	(0.152)		
-0.256	-0.295	-0.297	-0.345	-0.295	-0.297	-0.345		
(0.167)	(0.153)	(0.154)	(0.154)	(0.163)	(0.164)	(0.164)		
-0.125	-0.161	-0.170	-0.267	-0.027	-0.054	-0.150		
(0.164)	(0.154)	(0.155)	(0.155)	(0.276)	(0.268)	(0.269)		
-0.431	-0.485	-0.499	-0.645	-0.501	-0.513	-0.659		
(0.185)	(0.173)	(0.173)	(0.173)	(0.169)	(0.169)	(0.169)		
-0.646	-0.705	-0.729	-0.921	-0.705	-0.729	-0.921		
(0.193)	(0.181)	(0.180)	(0.180)	(0.155)	(0.153)	(0.153)		
-0.175	0.161	0.146	0.080	0.161	0.146	0.080		
(0.131)	(0.116)	(0.117)	(0.117)	(0.124)	(0.125)	(0.125)		
0.037	0.042	0.046	0.086	0.048	0.051	0.088		
1621	1621	1621	1621	1294	1294	1294		
	Raw scale -0.155 (0.176) -0.072 (0.203) -0.167 (0.156) -0.256 (0.167) -0.125 (0.164) -0.431 (0.185) -0.646 (0.193) -0.175 (0.131) 0.037 1621	A Scale Raw scale Model 1 -0.155 -0.222 (0.176) (0.165) -0.072 -0.153 (0.203) (0.185) -0.167 -0.267 (0.156) (0.141) -0.256 -0.295 (0.167) (0.153) -0.125 -0.161 (0.164) (0.154) -0.431 -0.485 (0.185) (0.173) -0.646 -0.705 (0.181) (0.181) -0.175 0.161 (0.131) (0.116) 0.037 0.042 1621 1621	All respondent Scale residualized Raw scale Model 1 Model 2 -0.155 -0.222 -0.192 (0.176) (0.165) (0.165) -0.072 -0.153 -0.137 (0.203) (0.185) (0.184) -0.167 -0.267 -0.252 (0.156) (0.141) (0.143) -0.167 -0.267 -0.257 (0.167) (0.153) (0.154) -0.1667 -0.295 -0.297 (0.167) (0.153) (0.154) -0.125 -0.161 -0.170 (0.164) (0.154) (0.155) -0.431 -0.485 -0.499 (0.185) (0.173) (0.173) -0.646 -0.705 -0.729 (0.193) (0.161) (0.180) -0.175 0.161 0.146 (0.131) (0.161) (0.117) 0.037 0.042 0.046 1621 1621 1621	All respondents Scale residualized with Raw scale Model 1 Model 2 Model 3 -0.155 -0.222 -0.192 -0.054 (0.176) (0.165) (0.165) (0.165) -0.072 -0.153 -0.137 -0.045 (0.203) (0.185) (0.184) (0.184) -0.167 -0.267 -0.252 -0.207 (0.156) (0.141) (0.143) (0.143) -0.167 -0.267 -0.252 -0.207 (0.156) (0.141) (0.143) (0.143) -0.167 (0.267 -0.252 -0.207 (0.153) -0.297 -0.345 (0.154) -0.256 -0.295 -0.297 -0.345 (0.167) -0.161 -0.170 -0.267 (0.164) (0.153) (0.154) (0.155) -0.431 -0.485 -0.499 -0.645 (0.181) (0.180) (0.180) (0.180) -0.175	Pane All respondents Scale residualized with Scale Raw scale Model 1 Model 2 Model 3 Model 1 -0.155 -0.222 -0.192 -0.054 -0.222 (0.176) (0.165) (0.165) (0.165) (0.175) -0.072 -0.153 -0.137 -0.045 -0.153 (0.203) (0.185) (0.184) (0.184) (0.198) -0.167 -0.267 -0.252 -0.207 -0.267 (0.156) (0.141) (0.143) (0.143) (0.150) -0.256 -0.295 -0.297 -0.345 -0.295 (0.167) (0.153) (0.154) (0.163) (0.163) -0.125 -0.161 -0.170 -0.267 -0.027 (0.164) (0.154) (0.155) (0.276) -0.431 -0.485 -0.499 -0.645 -0.501 (0.185) (0.173) (0.173) (0.163) (0.169)	Panel respondents Panel respondents Scale residualized with Scale residualized Raw scale Model 1 Model 2 Model 3 Model 1 Model 2 -0.155 -0.222 -0.192 -0.054 -0.222 -0.192 (0.176) (0.165) (0.165) (0.165) (0.175) (0.176) -0.072 -0.153 -0.137 -0.045 -0.153 -0.137 (0.203) (0.185) (0.184) (0.184) (0.198) (0.196) -0.167 -0.267 -0.252 -0.207 -0.267 -0.252 (0.165) (0.141) (0.143) (0.143) (0.150) (0.153) -0.256 -0.295 -0.297 -0.345 -0.297 -0.054 (0.167) (0.153) (0.154) (0.154) (0.163) (0.164) -0.151 (0.155) (0.276) -0.297 (0.268)		

Table S9.	Least squares models for period effects in the racial resentment scale for black-only, non-
Hispanic	respondents, 2006-2020

Hispanic respondents, 2006-2020									
		A	ll respondent	ts	Pane	l respondents for 2016-2020	only		
		Scale	Scale residualized with Scale residua				with		
	Raw scale	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3		
2006	0.272	0.240	0.244	-0.111	0.240	0.244	-0.111		
	(0.237)	(0.219)	(0.218)	(0.255)	(0.234)	(0.232)	(0.272)		
2008	0.277	0.290	0.288	0.067	0.290	0.288	0.067		
	(0.194)	(0.181)	(0.180)	(0.231)	(0.193)	(0.192)	(0.247)		
2010	-0.170	-0.261	-0.258	-0.366	-0.261	-0.258	-0.366		
	(0.239)	(0.214)	(0.210)	(0.245)	(0.229)	(0.224)	(0.261)		
2012									
	0.400								
2014	0.103	0.017	0.016	0.206	0.017	0.016	0.206		
	(0.231)	(0.189)	(0.188)	(0.237)	(0.202)	(0.201)	(0.253)		
2016	0.206	0.285	0.295	0.022	0 1 4 2	0.147	0.165		
2010	-0.200	-0.205	-0.283	(0.416)	-0.145	-0.147	(0.460)		
	(0.385)	(0.380)	(0.388)	(0.410)	(0.447)	(0.444)	(0.400)		
2018	-0.359	-0.416	-0.426	0.013	-0 131	-0 142	0 297		
2010	(0.672)	(0.673)	(0.675)	(0.694)	(0.630)	(0.632)	(0.653)		
	(0.07 2)	(0.070)	(0.070)	(0.05 1)	(0.000)	(0.002)	(0.000)		
2020									
followup	-0.363	-0.382	-0.391	0.193	-0.382	-0.391	0.193		
	(0.475)	(0.438)	(0.438)	(0.462)	(0.412)	(0.411)	(0.434)		
Intercept	0.131	-0.071	-0.073	0.105	-0.071	-0.073	0.105		
	(0.145)	(0.130)	(0.127)	(0.191)	(0.138)	(0.136)	(0.204)		
R-squared	0.064	0.074	0.075	0.034	0.056	0.057	0.049		
N	338	338	338	338	285	285	285		

Table S10. Least squares models for period effects in the racial resentment scale for Asian-only, no)n-
Hispanic respondents, 2006-2020	

	Prejudice (Table 4 5 it	Prejudice and bigotry Prejuc (Table 4 version: (Exp 5 items)		rejudice and bigotry Expanded 11-item version)		Oppose compensatory support (Trimmed 2-item version)		Oppose compensatory support (Table 4 version: 4 items)	
	Raw	Increment	Raw	Increment	Raw	Increment	Raw	Increment	
2006	0.061	-0.019	0.140	0.064	0.072	0.036	-0.025	-0.055	
	(0.063)	(0.059)	(0.067)	(0.064)	(0.053)	(0.051)	(0.042)	(0.042)	
2008	0.071	0.002	0.103	0.044	0.058	0.028	-0.022	-0.047	
	(0.063)	(0.059)	(0.062)	(0.059)	(0.050)	(0.048)	(0.047)	(0.046)	
2010	0.031	-0.014	0.048	0.005	0.014	0.001	-0.046	-0.053	
	(0.062)	(0.057)	(0.062)	(0.058)	(0.049)	(0.047)	(0.045)	(0.044)	
	()	()	()	· · /	()	()	· · /	· · · ·	
2012									
2014	-0.066	-0.067	-0.068	-0.068	-0.022	-0.021	-0.057	-0.059	
	(0.066)	(0.060)	(0.067)	(0.063)	(0.057)	(0.055)	(0.045)	(0.043)	
2016	-0.141	-0.112	-0.138	-0.111	-0.236	-0.226	-0.288	-0.279	
	(0.063)	(0.059)	(0.061)	(0.060)	(0.052)	(0.051)	(0.045)	(0.043)	
2018	-0.225	-0.178	-0.237	-0.195	-0.321	-0.302	-0.403	-0.381	
	(0.065)	(0.061)	(0.065)	(0.064)	(0.058)	(0.055)	(0.049)	(0.047)	
2020									
followup	-0.192	-0.118	-0.165	-0.107	-0.357	-0.328	-0.443	-0.412	
	(0.071)	(0.067)	(0.069)	(0.069)	(0.069)	(0.066)	(0.056)	(0.054)	
Intercept	0.050	0.008	0.203	-0.029	0.259	-0.017	0.342	0.039	
	(0.049)	(0.044)	(0.050)	(0.047)	(0.037)	(0.036)	(0.031)	(0.030)	
R-squared	0.012	0.004	0.016	0.007	0.031	0.026	0.032	0.028	
N	7849	7849	7849	7849	7828	7828	11511	11511	

 Table S11. Least squares models for period effects on scales of prejudice and bigotry as well as opposition to compensatory support for white-only, non-Hispanic respondents, 2006-2020

	RAG	CDIF1	RAG	CDIF2	RACDIF3		RAC	CDIF4
	Raw	Increment	Raw	Increment	Raw	Increment	Raw	Increment
2006	-0.017	-0.018	-0.005	-0.018	0.031	0.031	0.024	-0.007
	(0.026)	(0.026)	(0.015)	(0.014)	(0.032)	(0.031)	(0.032)	(0.030)
2008	-0.020	-0.025	0.008	-0.004	0.048	0.050	0.035	0.012
	(0.028)	(0.028)	(0.017)	(0.016)	(0.034)	(0.032)	(0.033)	(0.031)
2010	-0.007	-0.011	0.010	0.002	0.054	0.053	0.014	-0.002
	(0.027)	(0.027)	(0.016)	(0.015)	(0.031)	(0.029)	(0.032)	(0.030)
2012								
2014	-0.017	-0.020	-0.005	-0.006	-0.006	-0.010	-0.024	-0.025
	(0.030)	(0.029)	(0.016)	(0.015)	(0.032)	(0.030)	(0.034)	(0.032)
2016	0.060	0.058	-0.006	-0.003	0.104	0.102	-0.054	-0.045
	(0.030)	(0.029)	(0.015)	(0.014)	(0.031)	(0.030)	(0.032)	(0.031)
2018	0.080	0.082	-0.013	-0.007	0.095	0.089	-0.109	-0.093
	(0.033)	(0.032)	(0.016)	(0.015)	(0.032)	(0.030)	(0.034)	(0.033)
2020								
followup	0.087	0.091	-0.019	-0.007	0.055	0.047	-0.090	-0.064
	(0.035)	(0.035)	(0.022)	(0.021)	(0.035)	(0.033)	(0.037)	(0.035)
Intercept	0.298	0.014	0.074	0.005	0.413	-0.034	0.458	-0.001
	(0.021)	(0.021)	(0.013)	(0.012)	(0.024)	(0.023)	(0.025)	(0.023)
Poguarod	0.000	0.010	0.001	0.000	0.005	0.005	0.010	0.005
K-squared	0.009	0.010	0.001	0.000	0.005	0.005	0.010	0.005
IN	7570	7570	7713	7713	7670	7670	7527	7527

Table S12. Least squares models for period effects for individual items on race-related attitudes for white-only,non-Hispanic respondents, 2006-2020

	AFFR	RMACT	WRKWAYUP (reversed)		Intel unint diffe	ligent- elligent erence	Hard working - lazy difference	
	Raw	Increment	Raw	Increment	Raw	Increment	Raw	Increment
2006	0.082	0.054	0.050	-0.002	0.028	-0.024	0.065	-0.012
	(0.054)	(0.052)	(0.064)	(0.061)	(0.065)	(0.063)	(0.090)	(0.087)
			0.050	0.010				0.007
2008	0.055	0.037	0.058	-0.010	0.022	-0.025	-0.029	-0.096
	(0.049)	(0.047)	(0.068)	(0.064)	(0.069)	(0.068)	(0.084)	(0.082)
2010	0.038	0.031	-0.016	0.039	0.007	-0.022	-0.056	-0.098
	(0.051)	(0.048)	(0.066)	(0.063)	(0.067)	(0.066)	(0.090)	(0.089)
			. ,		. ,	. ,	. ,	. ,
2012								
2014	0.014	0.010	-0.054	0.051	-0.053	-0.058	-0.061	-0.065
	(0.053)	(0.051)	(0.076)	(0.071)	(0.067)	(0.066)	(0.088)	(0.086)
2016	-0.162	-0.163	-0.293	0.276	-0.125	-0.113	-0.200	-0.183
	(0.052)	(0.051)	(0.077)	(0.074)	(0.062)	(0.060)	(0.084)	(0.081)
	()	()	· · · ·	()	()	()	· · · ·	()
2018	-0.203	-0.200	-0.418	0.387	-0.064	-0.039	-0.244	-0.204
	(0.060)	(0.058)	(0.081)	(0.076)	(0.067)	(0.067)	(0.093)	(0.091)
2020 followup	-0.175	-0 168	-0 542	0.484	-0.058	-0.018	-0 172	-0 113
lollowup	(0.074)	(0.072)	(0.086)	(0.081)	(0.084)	(0.083)	(0.101)	(0.102)
	(0.07 1)	(0.072)	(0.000)	(0.001)	(0.001)	(0.000)	(0.101)	(0.102)
Intercept	3.406	-0.031	3.307	-0.007	7.349	0.018	7.655	0.052
	(0.037)	(0.035)	(0.050)	(0.047)	(0.053)	(0.052)	(0.069)	(0.067)
R-souared	0.014	0.012	0.032	0.026	0.003	0.001	0.006	0.003
N	7511	7511	7784	7784	7622	7622	7622	7622

Table S12 (continued). Least squares models for period effects for individual items on race-related atti	tudes for
white-only, non-Hispanics respondents, 2006-2020	

	LIVEBLKS		Oppose intermarriage (Tesler OFR coding)		DISCAFF		LETIN1A	
	Raw	Increment	Raw	Increment	Raw	Increment	Raw	Increment
2006	0.087	0.059	0.323	0.188	-0.111	-0.071	0.178	0.142
	(0.056)	(0.055)	(0.094)	(0.091)	(0.042)	(0.040)	(0.072)	(0.067)
2008	0.003	-0.019	0.122	0.013	-0.021	0.014	0.157	0.132
	(0.049)	(0.049)	(0.095)	(0.091)	(0.043)	(0.042)	(0.067)	(0.064)
2010	0.031	0.016	-0.007	-0.084	-0.001	0.004	0.114	0.096
	(0.051)	(0.051)	(0.089)	(0.084)	(0.044)	(0.042)	(0.070)	(0.064)
2012								
2014	0.015	0.015	0.150	0.1//	0.014	0.010	0.000	0.011
2014	0.015	0.015	-0.159	-0.166	-0.014	-0.019	-0.002	0.011
	(0.055)	(0.054)	(0.093)	(0.086)	(0.043)	(0.040)	(0.068)	(0.065)
2016	-0.072	-0.066	-0 222	-0 187	0.045	0.034	-0 117	-0.091
2010	(0.047)	(0.048)	(0.083)	(0.079)	(0.043)	(0.041)	(0.069)	(0.064)
	(0.01)	(0.010)	(0.000)	(0.077)	(0.010)	(0.011)	(0.003)	(0.001)
2018	-0.111	-0.098	-0.373	-0.309	0.073	0.033	-0.330	-0.288
	(0.049)	(0.050)	(0.079)	(0.076)	(0.044)	(0.043)	(0.072)	(0.066)
2020								
followup	-0.081	-0.064	-0.515	-0.422	-0.006	-0.044	-0.400	-0.337
	(0.057)	(0.057)	(0.081)	(0.076)	(0.045)	(0.044)	(0.087)	(0.079)
Intercent	2.025	0.014	1 014	0.020	2 220	0.014	2 6 4 9	0.004
intercept	(0.027)	-0.014	(0.060)	-0.030	(0.022)	(0.021)	(0.052)	-0.094
	(0.037)	(0.050)	(0.069)	(0.064)	(0.055)	(0.031)	(0.055)	(0.049)
R-squared	0.005	0.003	0.038	0.021	0.006	0.003	0.036	0.028
Ν	7779	7779	7834	7834	7554	7554	7684	7684

Table S12 (continued). Least squares models for period effects for individual items on race-related attitudes for
white-only, non-Hispanic respondents, 2006-2020

	HEL	PBLK
	Raw	Increment
2006	-0.218	-0.226
	(0.059)	(0.059)
2008	-0.137	-0.146
	(0.072)	(0.071)
		. ,
2010	-0.128	-0.129
	(0.069)	(0.068)
2012		
2014	-0 121	-0 129
2011	(0.062)	(0.061)
	(0.002)	(0.001)
2016	-0.423	-0.428
	(0.064)	(0.063)
2018	-0.544	-0.544
	(0.072)	(0.070)
2020		
followup	-0.706	-0.699
	(0.085)	(0.083)
Intercept	3.955	0.128
	(0.043)	(0.042)
R-squared	0.036	0.036
Ν	7696	7696

 Table S12 (continued). Least squares models for period effects for individual items on race-related attitudes for white-only, non-Hispanic respondents, 2006-2020

	Racial resentment		Prejudice and bigotry (5-item)		Oppose compensatory support (4-item)	
	Raw	Increment	Raw	Increment	Raw	Increment
Gender:	0.055	0.045	0.026	0.022	0.058	0.052
Male	-0.055	-0.045	-0.036	-0.022	-0.056	-0.055
	(0.009)	(0.009)	(0.008)	(0.009)	(0.008)	(0.007)
Female	-0.057	-0.046	-0.034	-0.016	-0.056	-0.050
	(0.009)	(0.008)	(0.007)	(0.007)	(0.007)	(0.006)
Educational attainment:						
No HS diploma	-0.035	-0.031	-0.036	-0.028	-0.042	-0.039
	(0.021)	(0.020)	(0.023)	(0.023)	(0.014)	(0.014)
HC dinlama	0.049	0.042	0.025	0.025	0.045	0.042
H5 dipiona	-0.049	-0.043	-0.035	-0.025	-0.045	-0.042
	(0.009)	(0.008)	(0.008)	(0.008)	(0.006)	(0.006)
Some college	-0.068	-0.059	-0.060	-0.046	-0.043	-0.040
5	(0.019)	(0.018)	(0.013)	(0.014)	(0.015)	(0.015)
	. ,	. ,	. ,			
Bachelor's degree	-0.062	-0.057	-0.019	-0.009	-0.078	-0.074
	(0.012)	(0.012)	(0.012)	(0.012)	(0.010)	(0.009)
Graduate degree	-0.040	-0.029	-0.009	0.008	-0.059	-0.054
	(0.019)	(0.020)	(0.011)	(0.012)	(0.014)	(0.014)
Party Identification:			0.040	0.044	0.440	0.407
Democrat (excluding leaners)	-0.122	-0.104	-0.069	-0.046	-0.118	-0.106
	(0.011)	(0.010)	(0.011)	(0.011)	(0.010)	(0.009)
Independents (including						
learners)	-0.057	-0.046	-0.025	-0.008	-0.055	-0.048
	(0.009)	(0.009)	(0.009)	(0.009)	(0.008)	(0.008)
Republicans (excluding leaners)	-0.014	-0.009	-0.024	-0.015	-0.010	-0.008
	(0.008)	(0.008)	(0.010)	(0.009)	(0.005)	(0.005)
N for gender and education	7854	7854	7849	7849	11511	11511
N for party identification	7599	7599	7594	7594	11124	11124

 Table S13 (for Comparison with Table 5). Raw and incremental change per year for the period effects on racial attitudes from 2010 through 2020, white-only, non-Hispanic respondents