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Park Segregated in Social Space

CONSIDERATIONS ON THE MINIMUM ULTRAMETRIC

The “minimum ultrametric” was proposed in Watts et al. (2002) to study the nature

of weak ties in spanning long distances in social space as well as the small world

phenomenon (Watts 1999) that results from such ties. The rationale behind em-

ploying the minimum ultrametric was derived from the small world experiments

(Travers and Milgram 1969), in which individuals were able to transmit a letter to

an unknown and geographically distant person through a short chain of acquain-

tances. The mechanism that made this possible was, arguably, that individuals

used only one social dimension—such as the occupation or region of residence

of the recipient—on which they thought they are closest to the “target” person

when deciding to which the letter should be sent next. The minimum ultrametric

incorporates these intuitions by postulating that two individuals in social space are

close to each other when they are close on at least one dimension of differentiation.

While theoretically appealing, it is impossible to use the minimum ultrametric

to infer the between-group distances from a set of observed relationships that link

individuals to the groups. This is because the minimum ultrametric does not obey

the triangle inequality and is, therefore, not a metric in the formal sense of the word.

For example, consider a two dimensional social space, X ⊆ R2, where positions

are represented by vectors x = (x1, x2) ∈ X. The minimum ultrametric defines

the distance between two points, a, b ∈ X, as ρmu(a, b) = min{|a1 − a2|, |b1 − b2|}

(Watts et al. 2002). Intuitively, this means that two points are considered to be close if

they are close on at least one dimension. Let I be a set of individuals and A and B two

groups. Suppose that all the individuals in I are located at x = (x1, x2) and let the

positions of A and B be, respectively, a = (a1, a2) and b = (b1, b2). Further, assume

that |x1 − a1| = 0 and |x2 − b2| = 0, implying that both ρmu(x, A) = ρmu(x, B) = 0.

In words, x is as close as possible to both A and B. Even in this situation, the

distance between A and B is ρmu(a, b) = min{|a1 − b1|, |a2 − b2|} = min{|x1 −

b1|, |x2 − a2|}, which we can make as large as we wish by choosing arbitrarily large

(or small) values for a2 and b1. In other words, even if all individuals in the space

are simultaneously as close as possible to A and B, the distance between A and B can
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be any positive real number and is therefore undefined. Hence, although interaction

patterns at the micro-level can be modeled starting from a “minimum ultrametric

space” (as in Centola 2015), modeling the macro from the bottom up is blocked

by the very nature of the distance function. In fact, it is precisely the assumption

that two groups being close to many individuals cannot be too far away from each

other in social space that enables us to infer the distances between groups from the

network composition of individuals. As the minimum ultrametric does not meet

this condition, it cannot be used for the current study despite its intuitive appeal.

DETAILS ON THE ESTIMATION PROCEDURE

Let Ω be the set of all parameters in the model. The data consists of i = 1, 2, ..., N

individuals and j = 1, 2, .., J social groups. The number of acquaintanceships in-

dividual i has to a member of group j is denoted by y∗ij which is, unfortunately,

unobserved. What is observed is whether y∗ij falls into any of the k = 1, 2, ..., K re-

sponse categories outlined in the data section. Assuming that y∗ij follows a Negative

Binomial distribution with rate and dispersion parameter µij and φ, the likelihood

of the response matrix Y given the set of parameters Ξ is

p(Y|Ω) =
N

∏
i=1

J

∏
j=1

K

∏
k=1

 ∑
y∗ij∈Ik

(
y∗ij + φ− 1

y∗ij

)(
µij

µ + φ

)y∗ij
(

φ

µij + φ

)φ
I(y∗ij∈Ik)

(1)

where we model the rate parameter as

µij = γiπjρ(θi, ξ j)
−δ (2)

It is clear that the model is not identified. For example, multiplying all γis by a

constant c and multiplying all ρ(θi, ξ j)s by cδ would yield the same likelihood of

the data. Similarly, squaring the distances ρ(θi, ξ j) and dividing δ by 2, would lead

to the same likelihood as well. To obtain a unique set of parameters, I first fix δ = 2

and reparameterize the model as

µij = α∗γ∗i πjρ
∗(θi, ξ j)

−2 (3)
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with the constraints ∏N
i=1 γ∗i = 1 and ∏N

i=1 ∏J
j=1 ρ∗ij(θi, ξ j)

−2 = 1. With this param-

eterization, α∗ can be interpreted as the “grand mean” of the responses, and γ∗i

and ρ∗(θi, ξ j)
−2 as deviations from it. This will identify the likelihood, given that

we fix the coordinate system of the social space. As the positions in social space

enter the likelihood only in form of their distances, the likelihood will be invariant

under any isometic transformation—i.e., translation, rotation, or reflection—of the

positions. In addition, the social space has no natural scale, so we have to fix the

scale of the space as well, either by fixing the scale of the group positions and let

the individual positions vary, or by fixing the scale of individual positions and let

the group positions be estimated relative to the individual positions.

To fix the scale of the social space, I assign the individual-positions a θi ∼

Normald(0, Σ) prior, with the constraint that diag(Σ) = Id. That is, the prior

variance of the individual positions are constrained to be equal to one for each

dimension, while the correlations between the dimensions are free to vary. This

“weakly” identifies the scale of the space. To fix the orientation of the space, I impose

d− 1 hard constraints and 1 soft constraint on d group-positions. That is, for the lth

group position, ξl , l ≤ d, I fix ξkl = 0 for k ≤ d− 1 and impose the sign constrain

ξkd > 0. In addition, I constrain the mean of the group positions for each dimension

to be equal to zero. In all models presented in the paper, these constraints were

sufficient to isolate a single posterior mode to sample from.

As Σ, with the diagonal entries constraint to 1, is a correlation matrix, it was

assigned a LKJ prior, i.e., Σ ∼ LKJ(2). The group positions that are unconstrained

are given ξkl ∼ Normal(0, 5) priors, while those with sign constraints are given

Gamma(2, .1) priors.1 The α∗ and γ∗i parameters are given normal priors on the log-

scale: ln α∗ ∼ Normal(0, 5) and ln γ∗i ∼ Normal(0, σγ), with σγ ∼ Half-Normal(3).

Lastly, the dispersion parameter is assigned a φ ∼ Half-Normal(3) prior as well.

Prior distributions for the population shares are shown in Table 1 of the paper.

1While the Gamma(2,.1) prior puts zero density at the origin, it has a constant positive derivative
at zero, which allows the likelihood to dominate the posterior near zero. It was suggested as a weakly
informative prior for parameters that have to be positive when using penalized likelihood estimation
“in the sense that they supply some direction but still allow inference to be driven by the data.” (Chung
et al. 2013: 686.)
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Abusing notation, and denoting all probability distributions by p(·), the poste-

rior distribution of Ω can be formulated as

p(Ω|Y) ∝
N

∏
i=1

J

∏
j=1

K

∏
k=1

 ∑
y∗ij∈Ik

(
y∗ij + φ− 1

y∗ij

)(
µij

µ + φ

)y∗ij
(

φ

µij + φ

)φ
I(y∗ij∈Ik)

(4)

× p(σγ)
N

∏
i=1

p(γ∗i | σγ)

× p(Σ)
N

∏
i=1

D

∏
d=1

p(θid |Σ)

× p(α∗)p(φ)
J

∏
j=1

p(πj)
D

∏
d=1

p(ξ jd).

The code to fit the model as well as to reproduce all presented materials in the

paper can be found at https://github.com/baruuum/Replication_Code.

CONVERGENCE DIAGNOSTICS

The potential scale reduction factor (Gelman et al. 2013: 284) and estimated effective

sample sizes for the three-dimensional social space model are shown below. Due

to the abundance of parameters, summary statistics are presented. The entries

of Table S1 show indications of well-mixed chains. The potential scale reduction

factors are close to 1 and the effective sample sizes for all parameters exceed 400.

Visual inspections of the traceplots suggest as well that the chains have reached a

stationary distribution and are mixing well.
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Table S1: Potential Scale Reduction Factor, R̂, and Effective Sample Size Estimates for the Three-dimensional
Social Space Model

Parameter Min 5% 25% 50% 75% 95% Max

Potential Scale Reduction Factor, R̂
θi 0.99 0.99 0.99 0.99 1.00 1.00 1.00
ξ j 0.99 0.99 0.99 1.00 1.00 1.00 1.00
πj 0.99 0.99 0.99 1.00 1.00 1.00 1.00
log α 0.99 0.99 1.00 1.00 1.00 1.00 1.00
log γi 0.99 0.99 0.99 0.99 1.00 1.00 1.00
σlog γ 0.99 0.99 0.99 0.99 0.99 0.99 0.99
φ 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Σ1,2 1.00
Σ1,3 1.00
Σ2,3 0.99

Effective Sample Sizes
Parameter Min 5% 25% 50% 75% 95% Max
θi 651.33 4227.39 6732.90 8566.82 10238.21 12488.40 17648.46
ξ j 408.68 481.63 1664.01 7226.81 9404.25 11570.34 14713.09
πj 596.97 896.25 4399.07 8321.92 11113.18 18757.88 20744.71
log α 1734.67 2268.12 4401.93 7069.20 9736.47 11870.28 12403.74
log γi 654.47 4600.99 7633.14 9627.42 11087.20 13014.91 18696.84
σlog γ 7969.49 8084.81 8546.09 9122.70 9699.30 10160.58 10275.90
φ 5330.15 5671.62 7037.50 8744.86 10452.22 11818.11 12159.58
Σ1,2 7991.23
Σ1,3 4605.69
Σ2,3 4956.22

Notes: a) θi = individual positions, ξ j = group positions, γ∗i = gregariousness parameters (as deviations from grand mean on the
log-scale), πj = population share parameters, α∗ = grand mean gregariousness (on the log-scale), σγ = standard deviation gregariousness
(on the log-scale), φ = dispersion parameter of Negative Binomial distribution, Σl,k = the (l, k)th element of the correlation matirx of
individual positions. b) For parameters that are multidimensional summary statistics are shown.

POSTERIOR PREDICTIVE DISTRIBUTIONS

Figure S1 compares the posterior predictive distribution of the three-dimensional

social space model, the posterior predictions of the random mixing model, and the

actual distribution of the data. The light gray bars show the percentage of responses

in the data. The black and gray violin plots, respectively, show the distribution

of 300 draws from the posterior predictive distribution of the social space and the

random mixing model. The figure shows that the model improves the fit over a
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Figure S1: Distribution of Analyzed Data and Posterior Predictions from Random
Mixing and Social Space Model with Three Dimensions
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Notes: Light gray bars show distribution of the data. Violin plots in black and
gray, respectively, show the distribution of 300 draws from the posterior predictive
distribution of the social space model and the random mixing model.

random mixing model considerably, and that it performs fairly well in following

the trend in the data; yet, it is also clear that the fit is not perfect. In particular, the

model is better in predicting the responses above 10 acquaintanceship ties then

those indicating a lower number.

INDIVIDUAL DISTRIBUTIONS OVER THE SOCIAL SPACE,

BY FAMILY INCOME, RACE, IDEOLOGY, AND RELIGIOSITY

Kernel density estimates for the distribution of individual over estimated social

space, broken down by family income, race, ideological self-identification, and

religiosity are shown in Figure S2. The density estimates are fitted on the posterior

median positions of the individuals. As the first two dimensions explain over 90%
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of the variance in the posterior median positions, only the first two dimensions are

shown.

A crude quantitative assessment of the overlap in the distributions might be

conducted by using the coefficient of overlapping, which is defined as

OVL( f , g) =
∫

X
min

{
f (x), g(x)

}
dx,

where f and g are the density functions of two groups both supported on the space

X. I use a grid approximation to estimate OVL( f , g) by calculating

ÔVL( f , g) =
K

∑
k=1

min
[

f̂ (k), f̂ (k)
]
∆k

where K is the number of grid points, f̂ (k) and ĝ(k), respectively, are kernel density

estimates of f and g at the point k ∈ X, and ∆k is the size of cell to which k belongs.

Using fifty equidistant grid points for each dimension, the coefficient of overlap-

ping is estimated to be .39, .62, .68, and .71 for groups defined by race (black vs.

white), family income (top 30% vs. bottom 30%), ideological self-placement (liberal

or extremely liberal vs. conservative or extremely conservative), and religiosity

(attending religious services nearly every week vs. once a year or less), respectively.
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Figure S2: Individual Positions in Social Space by Race, Ideology, Religiosity, and
Family Income
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sociological science | www.sociologicalscience.com S8 November 2021 | Volume 8



Park Segregated in Social Space

D-VALUES BETWEEN ALL PAIRS OF GROUPS

Figure S4 shows the posterior median of estimated D values between all pairs of

groups. Lighter shades represent larger values of D and thus stronger tendencies

for individuals’ network compositions to vary with respect to the pair of groups.

Figure S4: Variation in Individuals’ Distances to Pairs of Groups, All Groups
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ALTERNATIVE MEASURE OF DISPERSION FOR THE CALCULATION OF

D-VALUES

Figure S5 shows the posterior median of estimated D values for the groups that

were presented in the paper using the median absolute deviation (MAD), instead of

the standard deviation, of ∆jk(i) to capture the variations in network compositions.

Figure S5: Variation in Individuals’ Distances to Pairs of Groups
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Notes: Dots represent posterior medians of estimated D values. Thin and thick vertical lines, respectively,
show the 90% and 95% credible intervals. Dashed horizontal line in gray shows the posterior median of
the average D values across all pairs of groups. All D-values are calculated using the MAD instead of
the standard deviation of ∆jk(i).

Figure S6 shows the posterior median D-values, calculated using the MAD, for

all pairs of groups. Lighter shades represent larger values of D and thus stronger

tendencies for individuals’ network compositions to vary with respect to the pair of

groups.
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Figure S6: Variation in Individuals’ Distances to Pairs of Groups, All Groups
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MAD instead of the standard deviation of ∆jk(i).
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