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Abstract: Dyadic or, more generally, polyadic life course sequences can be more associated within
dyads or polyads than between randomly assigned dyadic/polyadic member sequences, a phe-
nomenon reflecting the life course principle of linked lives. In this article, I propose a method of
U andV measures for quantifying and assessing linked life course trajectories in sequence data.
Specifically, I compare the sequence distance between members of an observed dyad/polyad against
a set of randomly generated dyads/polyads. TheU measure quantifies how much greater, in terms of
a given distance measure, the members in a dyad/polyad resemble one another than do members of
randomly generated dyads/polyads, and theV measure quantifies the degree of linked lives in terms
of how much observed dyads/polyads outperform randomized dyads/polyads. I present a simulation
study, an empirical study analyzing dyadic family formation sequence data from the Longitudinal
Study of Generations, and a random seed sensitivity analysis in the online supplement. Through
these analyses, I demonstrate the versatility and usefulness of the proposed method for quantifying
linked lives analysis with sequence data. The method has broad applicability to sequence data in
life course, business and organizational, and social network research.
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AMONG the five general life course principles of life span development—agency,
time, space, timing, and linked lives (Elder, Johnson, and Crosnoe 2003)—the

principle of linked lives is the only one that directly connects life course trajectories
of people in salient relationships. As such, the concept of linked lives emphasizes
the generational dimension of time in that one individual’s life can be and most
often is embedded within the lives of their family members, including those from
other generations (Elder 1995; Macmillan and Copher 2005).

This article deals with the analysis of linked lives by proposing a method for
quantifying the degrees of linked lives for polyads, which has been illustrated with
an example of dyadic life course sequences that are associated with two generations
of family members. The objective is to provide a proper assessment of linked lives in
the form of two measures—one of life course distances and the other of the degree
of life course linkage—between members of dyads or more generally polyads.

Since its introduction from biology by Abbott and Forrest (1986) more than three
decades ago, sequence analysis has been widely applied in the social sciences by
second-wave sequence analysis researchers (see Aisenbrey and Fasang 2017; Fasang
and Raab 2014). There have been rapid and continuing methodological advances in
social sequence analysis (Barban et al. 2020; Blanchard, Bühlmann, and Gauthier
2014; Cornwell 2015; Fasang and Liao 2014; Piccarretta 2017; Raab et al. 2014; Studer
et al. 2011; Studer 2013; Studer, Struffolino, and Fasang 2018). In this article, I follow
this exciting research tradition of developing sequence analysis.
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There are three main approaches to analyzing dyadic sequence data, a special
case of polyadic sequence data. First, dyadic sequence data can be analyzed with
multichannel sequence analysis (Gauthier et al. 2010; Pollock 2007). Fasang and
Raab (2014), among others, provide a good example of applying multichannel
sequence analysis to parent-child family formation sequence data. Second, dyadic
sequence data can be formed into grid-sequences, based on the state space grid
method; this approach is called grid-sequence analysis (Brinberg et al. 2018). Typi-
cally, cluster analysis follows multichannel sequence analysis and grid-sequence
analysis, and the generated clusters often become the dependent variable in a
subsequent substantive analysis. Third, based on earlier formal work by Elzinga,
Rahmann, and Wang (2008), Liefbroer and Elzinga (2012) proposed a subsequence-
based approach to analyzing dyadic sequence data by focusing on the similarities
in subsequences between dyadic members compared with unrelated persons, and
they compared the subsequence-based approach to similarities based on optimal
matching. This approach is rather different in purpose from the first two because
multichannel sequence analysis and grid-sequence analysis provide a way to an-
alyze sequence data by summarizing them in different domains and channels,
but neither method gives an individual measure of such relatedness. The third
approach is the only one in the literature that offers a method for measuring individ-
ual dyadic members’ similarities. A recent study by Karhula et al. (2019) followed
the principle of the third approach and found strong similarity in siblings’ early
socioeconomic trajectories as compared with unrelated persons. Yet another fourth
potential candidate for analyzing dyadic and triadic sequence data is joint sequence
analysis proposed by Piccarreta (2017) for analyzing multiple domain sequence
data with a purpose similar to that of multichannel sequence analysis, although a
full exploration is beyond the scope of this article.

There are at least three differences between the proposed method in this article,
which provides an individual measure of linked lives, and the third approach.
The proposed method also examines similarities of dyadic (or polyadic) members,
but it is a large sample–based statistical similarity in that the method bases the
intradyadic or intrapolyadic distance or (dis)similarity comparison on a large number
of randomly assigned intradyadic or intrapolyadic distances. In contrast, Liefbroer and
Elzinga’s (2012) approach relies on an array of unrelated parent-child pairing possibilities
existing in the data matrix, and Karhula et al.’s (2019) study assigns for each focal
person one sibling and one randomly selected unrelated person to create one sibling dyad
and one unrelated dyad. The proposed method here has three major advantages:
First, it provides a flexible application for any distance measures (beyond just
optimal matching [OM] typically applied in earlier studies). The flexibility of using
different distance measures affords us the functionality of separately analyzing
timing, duration, and order of life course trajectories. Second, every dyad/polyad in
the sample receives not only their own estimate of life course resemblance but also
a statistical confidence of that estimate. Third, the proposed method has flexibility
for applications in the analysis of tetrads, pentads, hexads, and, more generally,
polyads, as presented in the section on the analytic procedure.

Researchers can apply the proposed method to at least three types of data. First,
the concept of linked lives features importantly in intergenerational research, as
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evidenced by my reanalysis of Fasang and Raab’s (2014) data. Second, analysis
of sibling dyads has been a focal issue in sibling studies, such as Karhula et al.’s
(2019) recent study. Finally, life course linkage can take place between different
sources of data, such as self-reported employment histories and the administrative
employment histories analyzed by Wahrendorf et al. (2019).

Furthermore, researchers can use the proposed method for analyzing sequence
data in a range of (sub)disciplines. The current article focuses on linked life courses
in life course studies, especially family formation. Other types of life courses
can also be linked and analyzed as such, such as linked employment and health
trajectories. In recent years, sequence analysis has begun to see applications in
business and organizational research (Dinovitzer and Garth 2020; Heimann-Roppelt
and Tegtmeier 2018; Ho et al. 2020; Nee et al. 2017) and social network research
(Cornwell 2015; Nee et al. 2017). Take, for example, Nee et al.’s (2017) study of
Chinese entrepreneurs’ egocentric network tie trajectories. If data on their six alters’
network tie trajectories were also collected, we would be able to apply the proposed
method to quantify similarity of the entrepreneurs’ network tie trajectories within
each of the heptadic networks versus across unrelated networks.

The article proceeds as follows. I first introduce the proposed method for
measuring and analyzing life course linkages of polyadic members in two ways.
The method allows us to capture the similarity in distance and the degree of linked
lives between members of polyads, compared with randomly constructed polyads.
It also allows us to define the similarity and the degree of linked lives in terms of
how much observed dyadic/polyadic sequences resemble one another more than
randomly generated dyadic/polyadic sequences. I then present a simulation study
of the two proposed measures (U and V, to be defined later) and an application
using an empirical data set, the Longitudinal Study of Generations (LSOG) survey,
involving dyadic family data. The application demonstrates usage of the two
measures—a measure of dyadic/polyadic distance and a measure of the degree of
linked lives indicating statistical confidence—by focusing on three different aspects
of the life course: timing, duration, and order of events. Because the approach relies
on randomization, I also analyze the effect of random seed selections and further
demonstrate such selections in a sensitivity analysis of the LSOG data (reported
in the online supplement). Finally, I draw some conclusions for the measures of
linked lives proposed here.

Measuring Linked Lives in Life Course Research

The principle of linked lives is influential in life course research. However, to this
day, scholars have not had a formal, general way to assess or measure the concept
at the individual level (i.e., for every single dyad or polyad) other than the third
approach for dyads only. The proposed measure here is based on the relative
principle of comparing the observed and a large set of randomized (i.e., unrelated)
dyadic life course sequences. Comparing observed and simulated data provides
an effective statistical analysis for researchers in many disciplines (for application
examples, see Amory et al. [2015] and Furman et al. [2018]). The proposed method
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also allows one to use any of the distance measures available in the R package
TraMineR.

To date, the only serious analytic attempts related to the concept of linked lives
have been the subsequence-based approach (Elzinga et al. 2008; Liefbroer and
Elzinga 2012) and, more recently, dyadic sibling comparison with unrelated nonsib-
ling dyads (Karhula et al. 2019). Liefbroer and Elzinga’s (2012) method computes
the number of shared subsequences between dyadic members, and the resulting
value is normed to fall in the range of [0, 1]. The method is conceptually straightfor-
ward. However, if a dyad has a resemblance score of 0.35, is it high or low? The
question is, in Liefbroer and Elzinga’s (2012:4) words, whether “actual pc-dyads do
not resemble each other more than nr-dyads” (here the dyadic data consist of any
person from the parental generation and any person from the children’s generation)
where “pc-dyads” stand for “parent-child dyads” and “nr-dyads” is shorthand for
“nonrelated dyads.” Therefore, we need a formal assessment of such resemblance.
The proposed randomization method in the current article makes possible a for-
mal assessment. In fact, by choosing random sequence generation mechanism 1
(to be described later in the section), we can assess the similarity of linked lives
by comparing related dyads or polyads with randomly selected unrelated dyads
or polyads. The method proposed here allows a variety of dissimilarity or dis-
tance measures for analyzing life course (state or event) sequences as discussed by
Studer and Ritschard (2016), and it differs from earlier randomization attempts at
distinguishing number of transitions only.1

The Procedure

The method described below provides an individual measure of linked lives com-
putable using any available distance measures. It evaluates life course sequences
in every linked polyad against randomly generated polyads based on a random
generation assumption or mechanism (to be discussed later). The evaluation uses a
specific distance measure that can be sensitive to timing, duration, or order (Studer
and Ritschard 2016). The method follows the principle of randomization tests
as a nonparametric statistical method, as described in Liao (2002) and Onghena
(2018). Under the null hypothesis of no (treatment) effect, the randomization test ap-
plies a random assignment procedure that produces a random shuffle of responses
(Onghena 2018). For sequence data, the null hypothesis is no different in terms of
sequence distance between members of an observed polyad and randomly assigned
members. The random shuffle allows reassignment of any unrelated polyadic
member sequences into “related” polyads.

Dyadic/polyadic sequences are three-dimensional objects. There are in total
N number of dyads/polyads for i = 1, 2, . . . , N; each dyad/polyad i has a total
number of J members for j = 1, 2, . . . , J; and each member j of dyad/polyad i has a
sequence of length l. Because the treatment of sequence length is specific to distance
measures (e.g., Hamming distance requires equal sequence lengths but OM does
not) and because randomization does not involve the length dimension, for the
sake of simplicity in presentation without losing generality, we disregard the third
dimension and consider polyadic sequences as two-dimensional objects. More
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Figure 1: A diagram of observed polyadic sequences Sij(i = 1, 2, . . . N and j = 1, 2, . . . J).

specifically, the method for analyzing dyadic (e.g., parent-child or sibling-sibling)
or polyadic sequence data takes the following steps:

1. (a) Let us use Sij to indicate a polyadic sequence S for the jth member of an
observed polyad i for i = 1 to N and j = 1 to J, where N is the total number
of polyads and J is the total number of the polyadic members in each polyad
under study. For example, a three-generation triadic sequence data set has
three members for each triad, with J = 3 and N = 300 for a total of 300 triads.
Figure 1 shows the general polyadic data setup.

(b) We compute a distance vector Di of the ith polyad between each member
pair of the N polyads, using a user-defined dissimilarity measure, such as the
following:

Di = {d(Sij, Sik)} for i = 1 to N and j, k = 1 to J but j 6=k, (1)

where d(·) is a user-chosen distance function. For dyadic data, Equation
(1) reduces to Di = d(Si1, Si2); for triadic data, Equation (1) becomes Di =

{d(Si1, Si2), d(Si1, Si3), d(Si2, Si3)}. Thus, for each Di where i = 1 to N, there
are Q entries in Equation (1). When the total number of polyadic members is J
(i.e., J number of members in a single polyad), there exists Q = ( J

2) =
J!

2!(J−2)!
number of unique pairwise distances between the members (pairwise because
distances can only be computed pairwise).2

2. Compute distances between reassigned polyadic sequences randomly drawn
from observed polyadic member sets:
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Figure 2: A diagram of 10 randomized dyads of two generations for computing Rt(T = 10; values in the box
indicate the tth dyadic sequence of member j).

Instead of computing d(Sij, Sik) where i = i and j 6= k , here we compute

Rt = {d(Saj, Sbk)}, (2)

where j 6= k still, and subscripts a and b are instances of i and represent a ran-
domly selected “ath” (instead of ith) polyad (e.g., for parent) and a randomly
selected “bth” (instead of ith) polyad (e.g., for child). Unlike in Equation (1)
where i = i, here a 6= b is true albeit not necessarily a required condition
because each t for t = 1 to T (when it is large) represents a randomly drawn
member sequence for either the jth or kth member of an ith polyad (where
i = a or b). In other words, each t represents a new cross-polyadic matching of
a randomly drawn j member (e.g., father) sequence with a randomly drawn
counterpart k member (e.g., offspring) sequence.

3. Repeat step 2 T number of times, with T being a large number preferably
≥ 1, 000. For dyadic data, Rt is a single vector with T entries when Q = 1.
Rt remains a vector of 1× T entries for triadic data when Q = 3 and more
generally for polyadic data when Q > 3.3 For a simple example of how the
random assignment works, let us use a dyadic example where J = 2 and
N = 10 for t = 1 to T number of randomized matchings of dyadic sequences
(Figure 2).

Once again, we ignore the length dimension in sequences. In the figure, the
x axis gives the value of a randomized tth dyad. In Figure 2, when t = 1, or
the first randomization, the first sequence in the first generation (member)
in red is randomly matched with the ninth member sequence of the second
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generation in blue, or a and b, as in Equation (2). When t = 6 for the sixth
randomization, the seventh sequence in the first generation in red (or a) is
randomly matched with the eighth member of the second generation in blue
(or b). Randomization continues until the last position, when t = T.

4. Using Equations (1) and (2), we obtain two statistics:

First, we define dyadic/polyadic distance Ui as follows:

Ui=
∑tRt

T
− Di. (3)

In other words, we subtract the observed Di from the mean of Rt for each
of the ith polyad; however, we could calculate a “unique” mean of Rt for
each ith polyad by computing T number of Rt for each polyad (resulting in
T × N Rt in total), it would be computationally intensive and unnecessary so
long as we keep T ≥ 1, 000, because when T is very large, the individually
computed Rt mean would not be distinguishable from one another. Besides,
using the same global mean in Equation (3) to compute Ui provides the same
benchmark for all observed polyadic distances. A greater Ui value suggests
a greater linkedness between the members of a polyad, although its actual
value depends on the chosen distance measure.

Second, record in a new variable the degree of dyadic/polyadic linkage Vi
(for i = 1 to N) of the proportion out of T times when Di < Rt, with the new
variable value falling in the [0, 1] interval (e.g., V1 = 990 of 1, 000 = 0.990,
V2 = 891 of 1, 000 = 0.891, . . ., VN = 995 of 1, 000 = 0.995 for T = 1, 000).
This computation essentially performs a randomization test and forms a
test statistic. It differs from the first statistic Ui that is based on the contrast
between Di and the mean of Rt; the second statistic, Vi, is based on the contrast
between Di and each of the T number of Rt. By using individual Rt instead of
its mean, one can expect Vi to have a greater variability than Ui. Vi has the
range of [0, 1], and a greater Vi value means a greater linkedness between the
members of a polyad. Additionally and optionally, for each Vi in step 4, if it is
>0.95, a value of 1 can be recorded in a new vector of length N, otherwise, 0.
This provides a confidence indicator of p ≥ 0.95 for each of the ith polyads.

The computation of steps 1 to 4 involves two separate loops: a loop of T times
and another loop of N times (as steps 1 and 4 can be computed in the same loop),
separate rather than embedded. As stated earlier, when T is large enough, there
is no need to repeat the randomization for each of the ith observed sequence. An
author-written R program seqpolyads4 that depends on TraMineR (Gabadinho et al.
2011) performs these computations and is available in the TraMineRextras package
at CRAN. To illustrate how the proposed procedure works, let us take a simple
example where J = 2 and N = 10, a two-generation dyadic set of family formation
sequences for ages 21 to 30. The trajectories have three states: s = single, m =
married, and c = having a child (Figure 3).

The first three dyads have just the two states of “s” and “m” without having
had a child. The other seven dyads all have a child. To keep it simple, we delay
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Figure 3: Sequence index plots of the set of hypothetical two-generation dyadic family formation sequences
Sij(J = 2, N = 10).

Table 1: Ui and Vi statistics for the 10 hypothetical dyads

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 Mean

Ui

Timing 3.258 3.258 3.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.558
Order 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445
Duration 1.924 1.924 1.924 1.095 1.095 1.095 1.095 1.095 1.095 1.095 1.344

Vi

Timing 0.866 0.866 0.866 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.764
Order 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.445
Duration 0.850 0.850 0.850 0.696 0.696 0.696 0.696 0.696 0.696 0.696 0.742

marriage (and first birth when relevant) of the second generation by one year
invariably without varying the order or duration of events (other than that due to
changed timing). I applied the proposed procedure to this illustrative dyadic data
set, and I present the results in Table 1.

The Ui and Vi statistics are reported in Table 1 for each of the ith dyadic se-
quences, calculated with T = 1, 000. For timing, I used Hamming distance; for
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order, I implemented SVRspell with a spell duration weight exponent of 0 and a
subsequence length-weight exponent of 1; for duration, I applied the CHI2 distance
with the number of intervals of 1 (or K = 1) (for further details of the parameters
for the three distances, see Tables 5 and 6 and Figure 1 in Studer and Ritschard
[2016]). Because all second-generation sequences are delayed in timing by a year,
the observed dyadic distance between members of dyads are 1 for the first three
dyads and 2 for the remaining seven dyads (because they involve two transitions).
As a result, the first three dyads’ Ui are all one unit higher than that of the other
dyads because their chance of being randomly matched with a sequence with two
delayed transitions is about double. Similarly, the first three dyads’ Vi values are
higher than those of the others. The identical values of Ui and Vi for order repre-
sent a special case. Here, for all dyads, sequence orders remain constant between
generations. Thus, the observed order distances are all zeros. However, because
a comparison of a sequence with two states with another with three states yields
a difference in order (and in this case, a unit difference in distance), the estimated
0.445 represents the proportion of such a difference. Finally, the dyadic duration
resemblances are lower for the dyadic sequences 4 to 10 in either Ui or Vi because
the durations of their three events of s, m, and c differ from randomly assigned
dyads to a smaller degree than do the three dyads with only two events.

Random Sequence Generation Mechanisms

I included two random sequence generation mechanisms for performing step 2:

1. Sequence-conditional random sequence generation: By making this assump-
tion, sequences of length l are randomly drawn from the observed set of
polyadic members (for dyads, e.g., set of parents’ sequences and set of chil-
dren’s sequences). Using this mechanism preserves the meaningful order of
states and is useful when certain states cannot precede certain other states
(e.g., divorce cannot precede first marriage for family formation sequences).

2. Sequence-conditional random state generation: By making this assumption,
sequences of length l are randomly drawn from the whole set of states from
the observed sequences under consideration with state replacement within a
selected sequence. Each sequence is randomly selected first before a random
reshuffle of the states within the selected sequence. This mechanism can be
useful for sequences with no logical orders for the list of states. For example,
out of the labor force, employment, and unemployment can occur at any time
and can last for any duration.

The choice of a random sequence generation mechanism depends on the nature
of sequences and the substantive need of the research.

A Simulation Study

To assess the statistical properties of the proposed method, I conducted a simulation
study of randomly generated sequences of 100 positions (L = 100) that belong to a

sociological science | www.sociologicalscience.com 56 January 2021 | Volume 8



Liao Quantifying Sequence Linkages

dyadic (J = 2) data set with a variable N, contained in subset 1 (for the first member
of the dyad) and subset 2 (for the second member of the dyad) of the paired dyadic
sequence data. To control how the two subsets are linked, the paired sequences
are generated one pair at a time, collected into subset 1 and subset 2 one pair at a
time. After a specified proportion of linkedness is reached, the remaining dyads are
generated with a different alphabet (see below).

To simulate the two subsets, I randomly generated a varying proportion of dyads
with similar distinctive states. Two sequences with no common tokens/states are
maximally dissimilar (Dijkstra and Taris 1995; Elzinga 2003:9, Axiom 1) when
pairwise substitution costs between states are all equal, an assumption used in the
current data setup. To test how two members of a dyadic pair differ, I selected
the first three letters of the English alphabet (i.e., A, B, and C) and assigned them
randomly with replacement into the entire 100 positions of the first member of
a dyad. I also randomly assigned the same three letters with replacement into
the 100 positions of the second member of a dyad by keeping a varying degree of
similarity (to the first member’s 100 positions) at 18 different levels, with percentage
of similarities varying from 1 percent to 9 percent by 1 percent increments in order
to capture the more sensitive end of shared states, and from 10 percent to 90 percent
by 10 percent to cover the remaining range. Note that 0 percent and 100 percent are
trivial cases that need no simulation.

I conducted these operations with N = 50, 100, 250, 500, and 1,000 for each of
the 18 percentages of linked sequences. The simulation of linked lives computed
Hamming distances, using the procedure described in the previous section with
T = 1, 000 for simulating T number of randomly selected dyads, is to be repeated
with Z number of repeats of the simulation, with each simulation computing the
1,000 number of randomized dyads. For the simulation reported here, I set Z = 30
to be the total number of repeats of conducting the simulation; because there is
little difference in the patterns of results between just a single simulation and 100
repeats of the simulation, 30 repeats should be sufficient. Keep in mind that for each
repeat, 1,000 randomly assigned dyads were generated. Thus, 1, 000× 30 = 30, 000
randomized dyads serve as the basis for the computation reported in the figures.
Figures 4 and 5 present the simulated U and the V statistics based on Hamming
distance, respectively.

Each figure contains five panels of boxplots, each for a specific sample size from
50 to 1,000 pairs of dyadic sequences for assessing any potential effects of sample
size. In each panel, nine sets of simulations are reported, from 1 percent to 9 percent
shared states in the paired dyadic sequences. The plotted values are the output
from the program seqpolyads. The Ui values indicate the Hamming distance be-
tween “observed” dyadic sequences and the average of randomly combined dyadic
sequences. That is, the greater a Ui value, the greater the average distance between
two randomly paired dyadic members than between two “observed” dyadic mem-
bers.5 The Vi values in Figure 5 measure the confidence probability/proportion of
linked dyadic sequences, which reflects how well each of the “observed” dyadic
sequences outperforms—having smaller intradyadic distance than—randomly as-
signed dyadic sequences.
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Figure 4: Boxplots of Ui assessing difference between ”observed” and 1,000 simulated dyadic sequences with
sequence length = 100 and sample size = 50, 100, 200, 500, and 1,000 for percent shared states = 1 percent to 9
percent, 30 repeats of the simulation.

We can make three observations about the simulation results in these figures.
First, the performance of the proposed method shows a nice linear pattern. That is,
the increase in the size of Ui or Vi corresponds exactly to the proportion of shared
states in the paired dyadic sequences. Second, the method is rather insensitive to or
robust for sample size variation. As is obvious from the figures, the shape of the
distribution of the boxplots is almost identical across all sample sizes in all plots.
Finally, the Vi statistic covers a wider range within the range of [0,1], whereas the
Ui statistic concentrates in a much narrower band, relative to its minimum and
maximum values. The smaller variation of Ui is evidence for its reliance on the
averaged Rt.

To evaluate the performance of these two statistics for a greater amount of shared
states, Figures 6 and 7 present the nine sets of simulated results of 10 percent to 90
percent shared states in the paired dyadic sequences, using the same procedure as
generated Figures 4 and 5. Here the Ui statistics continue the covered range left
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Figure 5: Boxplots of Vi assessing difference between ”observed” and 1,000 simulated dyadic sequences with
sequence length = 100 and sample size = 50, 100, 200, 500, and 1,000 for percent shared states = 1 percent to 9
percent, 30 repeats of the simulation.

off in Figure 4, all the way to a Ui value of about 60, again in a linear fashion and
without variation across different sample sizes. Therefore, the entire range of Ui
covered in Figures 4 and 6 should provide an idea of the performance of Ui when
applied to the Hamming distance measuring dyadic similarity.

The patterns of Vi distributions, although consistent across sample sizes, do not
show a linear progression when the percentage of shared states increases. When
the degree of shared states is above 20 percent, dyadic linkage as measured by Vi
shows a typical value of 0.95 or above. In comparison, Ui values are below 30 for
dyads with 20 percent to 30 percent shared states, much lower than the results
from those with 90 percent shared states. The difference between the two statistics
demonstrates the usefulness of both, with Ui showing greater ability to differentiate
shared common states and Vi demonstrating a randomization test significance (or
in this case, confidence probability) with the null hypothesis stating no difference
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Figure 6: Boxplots of Ui assessing difference between ”observed” and 1,000 simulated dyadic sequences with
sequence length = 100 and sample size = 50, 100, 200, 500, and 1,000 for percent shared states = 10 percent to
90 percent, 30 repeats of the simulation.

between observed and random dyads. Therefore, the two statistics complement
each other.

Application

In this empirical application, I focus on intergenerational dyadic life course data
from the United States, using data from the LSOG analyzed in Fasang and Raab’s
(2014) study. The LSOG sequences record family trajectories of middle-class parents
born around 1920 to 1930, whose family formation took place approximately from
1935 to 1960, and the trajectories of their children whose family formation took place
between 1955 and 1990. Analyzing life course sequence data, Fasang and Raab (2014)
made two contributions: they conceptualized family formation holistically instead
of focusing on isolated events, and they identified three types of intergenerational
family formation patterns instead of estimating average transmission effects. Using
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Figure 7: Boxplots of Vi assessing difference between ”observed” and 1,000 simulated dyadic sequences with
sequence length = 100 and sample size = 50, 100, 200, 500, and 1,000 for percent shared states = 10 percent to
90 percent, 30 repeats of the simulation.

the method proposed in this article, I move beyond Fasang and Raab’s (2014) study
by implementing a more detailed measure of intergenerational transmission and by
dissecting the three dimensions of life course timing, duration, and order.

The LSOG provides complete family formation sequences of parents and their
children between ages 15 and 40. Fasang and Raab’s (2014) research represents
the first attempt to fully exploit the unique intergenerational and longitudinal
information on family formation of the LSOG. Like them, I use data from two
generations: (1) the parent generation, the “silent generation” born in the 1920s
and 1930s, and (2) their children, the Baby Boom generation born in the late 1940s
and 1950s. The data set for the analysis to follow has 461 parent-child dyads. The
parent-child dyads belong to four types of gender constellations: mother-daughter,
mother-son, father-daughter, and father-son. For further details on the data, see
Fasang and Raab (2014).
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The dyadic sequence data contain nine family formation states: single, no child;
single, one or more children; married, no child; married, one child; married, two
children; married, three children; married, four or more children; divorced, no
child; and divorced, one or more children. Note that there is a logical order to
these nine family formation states. For example, the single state always happens
first, and either of the two divorced states cannot immediately succeed the single
state. Furthermore, the states with children are in a logical order such that a state
with a higher number of children always succeeds a state with a lower number of
children, which in turn succeeds having no child. Because of such logical orders of
the sequence data, I chose random generation mechanism 1 to analyze the data.

Such typical family formation sequences possess the three distinctive charac-
teristics of timing, duration, and sequencing (order). They represent the onset of
a certain state, the time a person spends in a given state, and the sequencing of a
particular state vis-à-vis other states, respectively. Because of these characteristics,
I used four different distance measures for the descriptive analysis and three for
the regression analysis. Three measures are more sensitive to one of the life course
characteristics, and the last one has equal (in)sensitivity to all three: Hamming
distance (for timing), the CHI2 distance with K = 1 (for duration), the SVRspell dis-
tance with a spell duration weight exponent of 0 and a subsequence length-weight
exponent of 1 (for order), and the OMspell distance with an expansion cost of 0.5
and an indel cost of 2 (this measure is not dominated by timing, duration, or order
variations). I analyzed the LSOG data of 461 dyadic sequence pairs, and Figure 8
presents the density plot of the four types of dyadic distances as measured by U.
The x axis records the U values, that is, the differences between observed pairs of
dyadic sequence distances compared with differences based on randomly chosen
dyadic sequences (i.e., pairs of parent sequences and child sequences).

All four density curves concentrate in the middle range centered around zero
(the mean for duration U = 0.055; the mean for order U = 0.012; the mean for
timing U = 0.238; the mean for neutral U = 0.381). Although zero means no
difference between observed and randomly assigned dyads, we cannot further
compare the U curves based on different distance measure scales, though we can do
so with the V curves in Figure 9. To interpret a density plot, we must understand
that the total area under the curve is 1 or unity. At a given point on the x axis, the y
axis value can be >1 because the width of a point on the x axis can be rather narrow,
and the Y value is obtained by dividing the area for a given point of X by the width.

To see the behavior of life course linkage (V), I plotted the counterpart density
curves, and present them in Figure 9. The curves (V) representing the degree of
linked lives generally show a greater spread over a much shorter range than do the
mean-based U curves, although the V curve representing order shows more of a
multimodal distribution than do the others.

The LSOG dyads measured by the V focused on timing and (to a smaller degree)
the V focused on duration appear to resemble each other more than the V focused
on order, which has weaker resemblance, indicated by the gravitation of the curve
more toward the higher-valued end (and by a higher mean value given below). The
neutral distance measure (with a mean degree of linked life courses of 0.507) is a
summary measure of the other three curves (timing focused, mean = 0.479; duration
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Figure 8: Density plots of the LSOG dyadic distances U, using 1,000 simulated dyads by random generation
mechanism 1 (N = 461).

focused, mean = 0.488; and order focused, mean = 0.436). The green order-focused
curve has two peaks at or above 0.5, confirming the finding from Figure 8. One
observation not noticeable in Figure 8 is the higher concentration of the duration
density curve below 0.5, which suggests that more than half the sample lacks a high
degree of intergenerational transmission of family formation events in duration.

I applied these two measures—dyadic distance (U) and degree of dyadic linkage
(V)—in a reanalysis of the LSOG data reported in Fasang and Raab (2014). Fasang
and Raab identified, via a cluster analysis, three types of family formation sequences
of intergenerational transmission—strong transmission, moderate transmission,
and no transmission (contrasting patterns)—before analyzing the three categories
with a multinomial logit model. Instead of the three clusters, I allowed each dyad
to take on a value of dyadic distance (U) and the degree of dyadic linkage (V), and I
analyzed them in a series of regression models with robust standard errors using the
same set of independent variables as in Table 2 in Fasang and Raab (2014). Table 2
reports the descriptive statistics of the variables used in the regression analyses.

Table 2 includes the descriptive statistics of the two sets of new outcome vari-
ables and those of the independent variables used in Fasang and Raab’s (2014)
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Figure 9: Density plots of the LSOG degrees of dyadic linked lives V, using 1,000 simulated dyads by random
generation mechanism 1 (N = 461).

analysis. All these variables are measured at the dyadic level. Gender constellation
represents the gender-specific combination of a dyad, with the mother-daughter
combination as the reference category. Age difference records the difference be-
tween the parent’s and the child’s age in a dyad. Years of education for the parent
and the child is measured by two variables, the difference between the two dyadic
members and the average of the two members. Sibling position is the child’s birth
order. Affectual solidarity scale reflects the relationship quality between parents
and children. For further details on these variables, see Fasang and Raab (2014).

I estimated a series of six linear regression models6 with robust errors (for
correcting dyadic clustering because some dyads may belong to the same family).
For each dimension—timing, duration, and order—I estimated two models, one
with dyadic distance (U) and the other with degree of dyadic linkage (V) as the
outcome variable, and I report the coefficient estimates with t statistics in Table 3.

The overall patterns of effects (in terms of which variables are statistically sig-
nificant) on intergenerational family formation transmission are largely consistent
with those reported in Table 2 in Fasang and Raab (2014), other than those mea-
suring gender constellation. In this analysis, the gender-specific combinations do
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Table 2: Descriptive statistics for variables in the regression analysis (N = 391)

Mean SD

Timing U 0.238 4.434

Duration U 0.055 1.179

Order U 0.012 0.729

Timing V 0.479 0.298

Duration V 0.488 0.289

Order V 0.436 0.265

Gender constellation
Mother-daughter . . . . . .

Father-son 0.176 0.381

Mother-son 0.215 0.411

Father-daughter 0.271 0.445

Dyad’s age difference 25.321 4.421

Dyad’s average 14.670 2.067
years of education
Dyad’s difference in 1.375 3.127
years of education
Sibling position 1.666 0.819

Affectual solidarity scale 4.192 1.040

Note: 15.18 percent of the children have a missing value for the affectual solidarity
scale, reducing the sample size to 391.

not distinguish themselves. Furthermore, new in the current analysis is that we
can separate out the effects of timing, duration, and order. For example, the esti-
mated timing and duration effects on V means a year’s increase in a dyad’s age
difference (which suggests tradition) would increase the degree of resemblance in
family formation between two generations in terms of timing and duration (another
life course tradition) by 3.9 percent and 3.8 percent, respectively, compared with
randomized dyads (because the outcome variable is measured in the range of [0,1]).
This strong positive effect of age difference is also found in the contrast between the
strong transmission and the different process patterns analyzed by Fasang and Raab
(2014). It is possible that strong transmission of family formation is in part a byprod-
uct of intergenerational transmission of status (Fasang and Raab 2014), and older
parents tend to have more stable transmission of status. Education only matters in

sociological science | www.sociologicalscience.com 65 January 2021 | Volume 8



Liao Quantifying Sequence Linkages

Table 3: Regression estimates with robust standard errors correcting for dyadic family clustering (N = 391)

Timing Duration Order

U V U V U V

Gender constellation
Mother-daughter (ref.)

Father-son −0.190 0.002 −0.052 0.002 0.053 0.016
(−0.357) (0.045) (−0.354) (0.062) (0.507) (0.370)

Mother-son −0.184 −0.016 −0.042 −0.019 0.086 0.034
(−0.324) (−0.439) (−0.279) (−0.511) (0.857) (0.956)

Father-daughter −0.063 0.007 −0.026 0.005 −0.028 −0.014
(−0.131) (0.216) (−0.197) (0.176) (−0.367) (−0.544)

Dyad’s age difference 0.525† 0.039† 0.129† 0.038† 0.046† 0.017†

(7.960) (9.563) (7.244) (9.533) (4.078) (3.900)

Dyad’s average −0.198 −0.013 −0.051 −0.012 0.003 0.004
years of education (−1.860) (−1.949) (−1.737) (−1.840) (0.132) (0.469)

Dyad’s difference in −0.029 −0.002 −0.007 −0.002 0.033∗ 0.011∗

years of education (−0.429) (−0.409) (−0.406) (−0.371) (2.445) (2.226)

Sibling position −1.913† −0.143† −0.482† −0.138† −0.114 −0.042
(−6.640) (−7.401) (−6.275) (−7.440) (−1.953) (−1.851)

Affectual solidarity 0.448 0.029∗ 0.118 0.029∗ 0.102∗ 0.036∗

scale (child-parent) (1.931) (2.028) (1.863) (2.056) (2.554) (2.469)

Constant −8.664† −0.197 −2.104∗∗ −0.181 −1.482† −0.146
(−3.757) (−1.381) (−3.247) (−1.309) (−3.687) (−1.016)

R2 0.201 0.259 0.170 0.262 0.094 0.094

Note: t statistics are in parentheses. ∗ p < 0.05, † p < 0.01.

dyadic members’ difference in its effect on order (one year’s increase in difference
in years of education increases order resemblance by 1.1 percent, compared with
randomized dyads, judged by the estimated effect on V). Sibling position matters
for timing and duration. Take the effect on V for timing, for example: lowering
birth order by one position would increase timing resemblance by 14.3 percent
compared with randomized dyads. Finally, quality of parent-child relationships
shows a moderate positive effect on intergenerational transmission of life course
patterns, confirming the role model effect discussed by Schönpflug (2001). Of the
three dimensions, the effect of affectual solidarity scale is consistently stronger on
order (supported by the significance and size of the V estimate) than on timing or
duration.
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So far, I have focused on the estimated effects on V. The effects on U are similar
to the effects on V except that they are consistently weaker. The distance measure of
U quantifies how much an observed dyadic difference is smaller than the average of
randomly generated dyadic distances. For example, when birth order increases by
one position, dyadic distance decreases by about 1.9 units of Hamming’s distance
(or about 2 months). On the other hand, the degree of dyadic linkage measure
quantifies the proportion by which the observed dyad outperforms the randomly
generated dyads by having a smaller distance. We must bear these definitions
in mind when making interpretations. In summary, interpretation of U relies on
the definition of an actual distance measure, whereas interpretation of V is more
intuitive because it suggests the percentage of change per unit change of an X
variable for an observed dyad when compared with randomized dyads.

Because the proposed procedure relies on random selections, the issue of ran-
dom seeds should be investigated. I conducted a sensitivity analysis of random
seed selections (reported in the online supplement), and I draw the following con-
clusions. First, random seed selection can make a difference, based on density curve
observations, especially between the seeds that generated the lowest and highest
mean U and V value. Second, the U results, shown as density curves, tend to be
more clustered together (relatively less variable) than their V counterparts. Finally,
how sensitive are the empirical results reported in Table 3 to random seed selections?
The supplement suggests that the results based on the dyadic distance U values are
extremely consistent compared with those based on the dyadic linkage degree V
values, which show some differences from those reported in Table 3. However, the
random seed variations analyzed did not change any of the significance tests in any
models of U and V. This is reassuring, and as a result, for most applications, the
default seed can be used safely.

Conclusion

I have shown that the proposed U and V measures provide a useful method for
measuring and analyzing dyadic/polyadic similarities and linkages, as illustrated
with a simulation study, an empirical dyadic application, and a sensitivity analysis
(reported in the online supplement). I will now summarize some conclusions
about the general feasibility of the U and V measures, the potential applicability to
polyads, and how best to use the U versus V measures.

First, as demonstrated through the simulation study, the proposed method
provides a useful general way for analyzing linked life course trajectories. The
method has the flexibility to implement all sequence distance measures, and the
reader is advised to refer to the discussions provided by Ritschard and Studer
(2016) for their usages. Thus, the method can be used with any distance measures
available in TraMineR, the R package for sequence analysis.

Second, the proposed method of analyzing linked lives can be applied to the
analysis of tetrads, pentads, hexads, and higher dimensional polyads. The section
presenting the methodological procedure specified the general case of polyadic
linked lives. The functionality is already programmed in the seqpolyads function
(available in R’s TraMineRextras package). In the R program, a parameter not used
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in the earlier dyadic application is that of weight. For example, in a three-member
family, or triad consisting of two parents and a child, the importance of resemblance
between the parents may not be the same as that between the father and the
child or the mother and the child. We can capture such differential importance by
differentially weighting their respective distances.

Third, because the behavior of the U measure is more stable than that of the V,
as shown in the sensitivity analysis, it is advisable to apply U in actual empirical
analyses that focus on the statistical significance of independent variables. The
supplemented sensitivity analysis also suggests that the currently used default
random seed value is a fine choice because it produces similar results to the average
results produced using a sizable number of random seeds. This saves the extra
trouble of relying on extra computations using a large set of different random seeds.
If the data analyst is more interested in the degree of resemblance between polyadic
members, however, then the V measure can provide an easier interpretation because
the V measure, with its normed range of [0, 1], is directly comparable between an
application of different distance measures, whereas the U measure is not. When both
U and V measures are applied, we may also view the Vi measure as a confidence
probability for the Ui results.

Finally, although the current application involves family dyads, the method
should be applicable to analyzing polyadic linkages defined by sources of data
(Wahrendorf et al. 2019) as well as defined by other social groups, such as friend-
ship networks, neighborhoods, companies, and birth cohorts or other types of
cohorts and other forms of linked social groups. Furthermore, researchers can use
the proposed method for analyzing sequence data in a range of (sub)disciplines.
Although the current article is focused on linked family formation life courses,
sequence analysis has recently gained popularity in business and organizational
research as well as social network research (Cornwell 2015; Dinovitzer and Garth
2020; Heimann-Roppelt and Tegtmeier 2018; Ho et al. 2020; Nee et al. 2017). For
family formation life course research, it is natural to define a polyadic social group
that contains members of different generations in the same family or siblings in
the same family. For business/organizational and social network research, a mean-
ingful polyadic social group can be defined as a set of firms that conduct business
closely together, thereby forming a network with ties. When data on firm-level or
entrepreneurial-level attributes or qualities are collected over firms’ life cycles, the
proposed method can help researchers gain insight into similarity of within-group
life cycle trajectories.

Notes

1 There has been an attempt in the form of an R package (Nightingale 2016) to use random-
ization for assessing household members’ similarities by comparing how such members
resemble one another compared to randomly generated data. There are two limitations
of this package for analyzing life course sequences: First, the program produces a single
statistic for the sample, yet a measure recording how linked the members’ lives are
in each dyadic cluster is desirable, like Liefbroer and Elzinga’s (2012) method or the
proposal in this article. Second, and more important, is the method for computing dif-
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ferences between observed and randomly generated data. The number of state changes
or transitions may be sufficient for capturing social behavior, such as migration, but
insufficient for analyzing, more generally, family formation or other complex life course
trajectories.

2 The data analyst can apply weight according to the substantive meaning of the rela-
tionships to arrive at an overall distance among the members of a polyad. For a dyad,
( J

2) = 1, the single weight = 1; for a triad, ( J
2) = 3, three weights can be assigned. For a

five-generation data set, for example, the linkage between the first and fifth generations
is rather weak, to the degree of nonexistance, so the researcher can assign a weight of
close to 0.

3 However, for Q = 3, Rt can be reduced to a single vector of length T because the three
pairwise distances can be summed with weights applied, yielding a single distance. For
example, for a triad of father, mother, and child, if our main concern is intergenerational
transmission, the weight for the distance between father and mother can be half of that
between a parent and a child. The same principle applies to higher values of Q for
polyadic sequence analysis.

4 The R program, seqpolyads, computes the two measures of polyadic distance (U) and
polyadic linkage (V) of sequence data and a few other associated statistics. The user
can choose a distance measure and its associated parameters, a random generation
mechanism, a random seed number (for starting simulated data generation), and the
number of simulated sequences. For polyads beyond dyads, the user can additionally
choose a set of weights to assign to the distances between the members of a polyad.

5 “Observed” is in quotes because in the simulation study, these “observed” dyadic
sequences are also simulated.

6 For dealing with potential conditional nonnormal distributions of the outcomes, I
estimated a set of Gamma regression models. However, the substantive results differ
little from ordinary least squares regression results, which are reported here.

References

Abbott, Andrew, and John Forrest. 1986. “Optimal Matching Methods for Historical Se-
quences.” Journal of Interdisciplinary History 16(3):471–94. https://doi.org/10.2307/
204500.

Aisenbrey, Silke, and Anette E. Fasang. 2017. “The Interplay of Work and Family Trajectories
over the Life Course: Germany and the United States in Comparison.” American Journal
of Sociology 122(5):1448–4. https://doi.org/10.1086/691128.

Amory, Charles, Alexandre Trouvilliez, Hubert Gallée, Vincent Favier, F. Naaim-Bouvet,
C. Genthon, Cécile Agosta, Luc Piard, and Hervé Bellot. 2015. “Comparison between
Observed and Simulated Aeolian Snow Mass Fluxes in Adélie Land, East Antarctica.”
The Cryosphere 9:1373–83. https://doi.org/10.5194/tc-9-1373-2015.

Barban, N., X. de Luna, Emma Lundholm, Ingrid Svensson, and F. C. Billan. 2020. “Causal Ef-
fects of the Timing of Life-course Events: Age at Retirement and Subsequent Health.” Soci-
ological Methods & Research 49(1):216–49. https://doi.org/10.1177/0049124117729697.

Blanchard, Philippe, Felix Bühlmann, and Jacque-Antoine Gauthier, eds. 2014. Advances in
Sequence Analysis: Methods, Theories and Applications. New York: Springer.

Brinberg, Miriam, Nilam Ram, Gizem Hülür, Timothy R. Brick, and Dennis Gerstorf. 2018.
“Analyzing Dyadic Data Using Grid-Sequence Analysis: Interdyad Differences in In-

sociological science | www.sociologicalscience.com 69 January 2021 | Volume 8

https://doi.org/10.2307/204500
https://doi.org/10.2307/204500
https://doi.org/10.1086/691128
https://doi.org/10.5194/tc-9-1373-2015
https://doi.org/10.1177/0049124117729697


Liao Quantifying Sequence Linkages

tradyad Dynamics.” Journal of Gerontology Series B 73:5–18. https://doi.org/10.1093/
geronb/gbw160.

Cornwell, Benjamin. 2015. Social Sequence Analysis: Methods and Applications. Cambridge, UK:
Cambridge University Press.

Dijkstra, Wil, and Toon Taris. 1995. “Measuring the Agreement between Sequences.” Sociolog-
ical Methods & Research 24(2):214–31. https://doi.org/10.1177/0049124195024002004.

Dinovitzer, Ronit, and Bryant Garth. 2020. “The New Place of Corporate Law Firms in the
Structuring of Elite Legal Careers.” Law & Social Inquiry 45(2):339–71. https://doi.org/
10.1017/lsi.2019.62.

Elder, Glen H., Jr. 1995. “The Life Course Paradigm: Social Change and Individual Devel-
opment.” Pp. 101–39 in Examining Lives in Context: Perspectives on the Ecology of Human
Development, edited by Phyllis Moen, Glen H. Elder, Jr., and Kurt Luscher. Washington,
DC: American Psychological Association. https://doi.org/10.1037/10176-003.

Elder, Glen H., Jr., Monica Kirkpatrick Johnson, and Robert Crosnoe. 2003. “The Emergence
and Development of Life Course Theory.” Pp. 3–19 in Handbook of the Life Course, edited
by Jaylen T. Mortimer and Michael J. Shanahan. New York, NY: Plenum Publishers.

Elzinga, Cees H. 2003. “Sequence Similarity: A Nonaligning Technique.” Sociological Methods
& Research 32(1):3–29. https://doi.org/10.1177/0049124103253373.

Elzinga, Cees, Sven Rahmann, and Hui Wang. 2008. “Algorithms for Subsequence Combina-
torics.” Theoretical Computer Science 409(3):394–404. https://doi.org/10.1016/j.tcs.
2008.08.035.

Fasang, Anette Eva, and Tim Futing Liao. 2014. “Visualizing Sequences in the Social
Sciences: Relative Frequency Sequence Plots.” Sociological Methods & Research 43(4):643–
76. https://doi.org/10.1177/0049124113506563.

Fasang, Anette Eva, and Marcel Raab. 2014. “Beyond Transmission: Intergenerational
Patterns of Family Formation among Middle-Class American Families.” Demography
51:1703–28. https://doi.org/10.1007/s13524-014-0322-9.

Furman, Bradley T., Erin H. Leone, Susan S. Bell, Michael J. Durako, and Margaret O. Hall.
2018. “Braun-Blanquet Data in ANOVA Designs: Comparisons with Percent Cover
and Transformations Using Simulated Data.” Marine Ecology Progress Series 597:13–22.
https://doi.org/10.3354/meps12604.

Gabadinho, Alexis, Gilbert Ritschard, Nicolas S. Müller, and Matthias Studer. 2011. “Analyz-
ing and Visualizing State Sequences in R with TraMineR.” Journal of Statistical Software
40(4):1–37. https://doi.org/10.18637/jss.v040.i04.

Gauthier, Jacques-Antoine, Eric D. Widmer, Philipp Bucher, and Cedric Notredame.
2010. “Multichannel Sequence Analysis Applied to Social Science Data.” Sociological
Methodology 40(1):1–38. https://doi.org/10.1111/j.1467-9531.2010.01227.x.

Heimann-Roppelt, Anna, and Silke Tegtmeier. 2018. “Sequence Analysis in Entrepreneurship
Research: Business Founders’ Life Courses and Early-Stage Firm Survival.” International
Journal of Entrepreneurial Venturing 10(3):333–61. https://doi.org/10.1504/IJEV.2018.
093230.

Ho, Hillbun, Keng-Ming (Terence) Tien, Anne Wu, and Sonika Singh. “A Sequence Analysis
Approach to Segmenting Credit Card Customers.” Journal of Retailing and Consumer
Services, first published on November 27, 2020 as doi:10.1016/j.jretconser.2020.102391.

Karhula, Aleksi, Jani Erola, Marcel Raab, and Anette Fasang. 2019. “Destination as a Process:
Sibling Similarity in Early Socioeconomic Trajectories.” Advances in Life Course Research
40:85–98. https://doi.org/10.1016/j.alcr.2019.04.015.

sociological science | www.sociologicalscience.com 70 January 2021 | Volume 8

https://doi.org/10.1093/geronb/gbw160
https://doi.org/10.1093/geronb/gbw160
https://doi.org/10.1177/0049124195024002004
https://doi.org/10.1017/lsi.2019.62
https://doi.org/10.1017/lsi.2019.62
https://doi.org/10.1037/10176-003
https://doi.org/10.1177/0049124103253373
https://doi.org/10.1016/j.tcs.2008.08.035
https://doi.org/10.1016/j.tcs.2008.08.035
https://doi.org/10.1177/0049124113506563
https://doi.org/10.1007/s13524-014-0322-9
https://doi.org/10.3354/meps12604
https://doi.org/10.18637/jss.v040.i04
https://doi.org/10.1111/j.1467-9531.2010.01227.x
https://doi.org/10.1504/IJEV.2018.093230
https://doi.org/10.1504/IJEV.2018.093230
https://doi.org/10.1016/j.alcr.2019.04.015


Liao Quantifying Sequence Linkages

Liao, Tim Futing. 2002. Statistical Group Comparison. New York, NY: John Wiley & Sons.
https://doi.org/10.1002/9781118204214.

Liefbroer, Aart C., and Cees H. Elzinga. 2012. “Intergenerational Transmission of Behavioural
Patterns: How Similar Are Parents’ and Children’s Demographic Trajectories?” Advances
in Life Course Research 17(1):1–10. https://doi.org/10.1016/j.alcr.2012.01.002.

Macmillan, Ross, and Ronda Copher. 2005. “Families in the Life Course: Interdependency of
Roles, Role Configurations, and Pathways.” Journal of Marriage and Family 67(4):858–879.
https://doi.org/10.1111/j.1741-3737.2005.00180.x.

Nee, Victor, Lisha Liu, and Daniel DellaPosta. 2017. “The Entrepreneur’s Network and Firm
Performance.” Sociological Science 4:552–79. https://doi.org/10.15195/v4.a23.

Nightingale, Glenna. 2016. “R Package Lifecourse.” The CRAN R project repository. https:
//CRAN.R-project.org/package=lifecourse.

Onghena, Patrick. 2018. “Randomization Tests or Permutation Tests? A Historical and
Terminological Clarification.” Pp. 209–227 in Randomization, Masking, and Allocation
Concealment, edited by Vance W. Berger. Boca Raton, FL: Chapman & Hall/CRC Press.
https://doi.org/10.1201/9781315305110-14.

Piccarreta, Raffaella. 2017. “Joint Sequence Analysis: Association and Clustering.” Sociologi-
cal Methods & Research 46(2):252–87. https://doi.org/10.1177/0049124115591013.

Pollock, Gary. 2007. “Holistic Trajectories: A Study of Combined Employment, Housing and
Family Careers by Using Multiple-Sequence Analysis.” Journal of the Royal Statistical Soci-
ety, Series A: Statistics in Society 170(1):167–83. https://doi.org/10.1111/j.1467-985X.
2006.00450.x.

Raab, Marcel, Anette Eva Fasang, Aleksi Karhula, and Jani Erola. 2014. “Sibling Simi-
larity in Family Formation.” Demography 51(6): 2127–54. https://doi.org/10.1007/
s13524-014-0341-6.

Schönpflug, Ute. 2001. “Intergenerational Transmission of Values: The Role of Transmission
Belts.” Journal of Cross-Cultural Psychology 32(2):174–85. https://doi.org/10.1177/
0022022101032002005.

Studer, Matthias. 2013. WeightedCluster Library Manual: A Practical Guide to Creating
Typologies of Trajectories in the Social Sciences with R. Working Paper, Institute for
Demographic and Life Course Studies. http://doi.org/10.12682/lives.2296-1658.
2013.24.

Studer, Matthias, and Gilbert Ritschard. 2016. What Matters in Differences between Life
Trajectories: A Comparative Review of Sequence Dissimilarity Measures. Journal of the
Royal Statistical Society: Series A (Statistics in Society) 179(2):481–511. https://doi.org/
10.1111/rssa.12125.

Studer, Matthias, Gilbert Ritschard, Alexis Gabadinho, and Nicolas S. Müller. 2011. “Dis-
crepancy Analysis of State Sequences.” Sociological Methods & Research 40(3):471–510.
https://doi.org/10.1177/0049124111415372.

Studer, Matthias, Emanuela Struffolino, and Anette E. Fasang. 2018. “Estimating the Re-
lationship between Time-Varying Covariates and Trajectories: The Sequence Analysis
Multistate Model Procedure.” Sociological Methodology 48(1):103–35. https://doi.org/
10.1177/0081175017747122.

Wahrendorf, Morten, Anja Marr, Manfred Antoni, Beate Pesch, Karl-Heinz Jöckel, Thorsten
Lunau, Susanne Moebus, Marina Arendt, Thomas Brüning, Thomas Behrens, and Nico
Dragano. 2019. “Agreement of Self-Reported and Administrative Data on Employment
Histories in a German Cohort Study: A Sequence Analysis.” European Journal of Population
35:329–46. https://doi.org/10.1007/s10680-018-9476-2.

sociological science | www.sociologicalscience.com 71 January 2021 | Volume 8

https://doi.org/10.1002/9781118204214
https://doi.org/10.1016/j.alcr.2012.01.002
https://doi.org/10.1111/j.1741-3737.2005.00180.x
https://doi.org/10.15195/v4.a23
https://CRAN.R-project.org/package=lifecourse
https://CRAN.R-project.org/package=lifecourse
https://doi.org/10.1201/9781315305110-14
https://doi.org/10.1177/0049124115591013
https://doi.org/10.1111/j.1467-985X.2006.00450.x
https://doi.org/10.1111/j.1467-985X.2006.00450.x
https://doi.org/10.1007/s13524-014-0341-6
https://doi.org/10.1007/s13524-014-0341-6
https://doi.org/10.1177/0022022101032002005
https://doi.org/10.1177/0022022101032002005
 http://doi.org/10.12682/lives.2296-1658.2013.24
 http://doi.org/10.12682/lives.2296-1658.2013.24
https://doi.org/10.1111/rssa.12125
https://doi.org/10.1111/rssa.12125
https://doi.org/10.1177/0049124111415372
https://doi.org/10.1177/0081175017747122
https://doi.org/10.1177/0081175017747122
https://doi.org/10.1007/s10680-018-9476-2


Liao Quantifying Sequence Linkages

Acknowledgments: The author wishes to acknowledge the benefit of an Australian Re-
search Council Discovery Project (DP#160101063, chief investigators Irma Mooi-Reci
and Mark Wooden, and partner investigator Tim Liao). The abovementioned project
anticipated the need for the research reported in this article. The author would also
like to thank Anette Fasang and Marcel Raab, who kindly shared the Longitudinal
Study of Generations data used in their 2014 Demography publication, and Yifan Shen
for comments.

Tim F. Liao: Department of Sociology, University of Illinois. E-mail: tfliao@illinois.edu.

sociological science | www.sociologicalscience.com 72 January 2021 | Volume 8


