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Abstract: Interest in the study of gene–environment interaction has recently grown due to the
sudden availability of molecular genetic data—in particular, polygenic scores—in many long-running
longitudinal studies. Identifying and estimating statistical interactions comes with several analytic
and inferential challenges; these challenges are heightened when used to integrate observational
genomic and social science data. We articulate some of these key challenges, provide new perspec-
tives on the study of gene–environment interactions, and end by offering some practical guidance
for conducting research in this area. Given the sudden availability of well-powered polygenic scores,
we anticipate a substantial increase in research testing for interaction between such scores and
environments. The issues we discuss, if not properly addressed, may impact the enduring scientific
value of gene–environment interaction studies.
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OVER the past decade, the world has witnessed a massive expansion of our
ability to conduct biological inquiry into human behavior (Visscher et al.

2017). Genome-wide association studies (GWAS) (Pearson and Manolio 2008) have
established that a broad array of behavioral traits (e.g., mental well-being, cognitive
function, tobacco use, and risk-taking) and biomedical traits (e.g., height, body
mass index, cholesterol, and cardiovascular disease) are highly polygenic (Boyle, Li,
and Pritchard 2017; Chabris et al. 2015). Thus, population variation in these traits
is attributable to many genetic variants, each individually exhibiting a relatively
small effect. This has led many researchers to forego the study of specific genetic
variants in favor of genome-wide composite measures (Dudbridge 2013). These
composite measures, known as polygenic scores (PGSs), summarize the cumulative
effects of many variants across the genome and aim to index an individual’s genetic
liability for a given trait. PGSs constructed from large GWAS are robustly predictive
of a sizable proportion of variance in consequential outcomes, such as educational
attainment and lifespan (Cesarini and Visscher 2017; Lee et al. 2018; Sugrue and
Desikan 2019).1 In fact, many PGSs are predictive of important biobehavioral and
social science outcomes that were not the target of the original GWAS. Although
PGS are neither pure (they may capture, e.g., correlated nongenetic factors [Morris et
al. 2020]) nor universal (i.e., they may not generalize to environmental contexts not
captured in the original GWAS from which they were constructed [Mostafavi et al.
2020]) measures, they have still sparked substantial interest. Many have argued that
PGSs may advance our understanding of the behavioral and biomedical sciences
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(Belsky and Harden 2019; Conley and Fletcher 2017; Dudbridge 2016; Harden and
Koellinger 2020). Sociologists, in particular, have begun to offer frameworks for
thinking about how the discipline may benefit from such work (Freese 2018; Mills
and Tropf 2020).

The increasing adoption of genetic approaches in social and behavioral science
research has not diminished interest in the environment. Indeed, how social and
environmental factors combine and interact with biological factors to produce in-
dividual differences is a question at the forefront of many research agendas in
the social and behavioral sciences. Researchers have long posited that genetic
effects likely vary as a function of environment (Feldman and Lewontin 1975).2

For example, in the twin study literature, there has been substantial interest in
whether decompositions of observed variation in a phenotype into genetic and
environmental components differ by socioeconomic context or age (Purcell 2002).
Other research designs have tested interactions between measured genotypes (i.e.,
individual genetic variants) and environmental features. Although such an ap-
proach has intuitive appeal, it has proven technically challenging to implement
(Duncan and Keller 2011). Some of the challenges of this research agenda may be at-
tributable to unrealistically large expectations for effect sizes of individual variants
and thus circumvented through use of PGSs. Yet, even when gene–environment
interaction (GxE) results are robust and replicable, the interpretational and practical
implications of such research can be unclear.

Polygenic scores are rapidly becoming widely available. Data sets such as
the Health and Retirement Study (HRS; Ware et al. 2017), Add Health (Braudt
and Harris 2018), and the Wisconsin Longitudinal Study (Okbay, Benjamin, and
Visscher 2018) are posting preconstructed scores for use by researchers, and catalogs
of polygenic scores are being made available (Lambert et al. 2020). This novel data
resource may offer new and more robust avenues for exploration of GxE. However,
challenges remain. Given the emergence of this new tool, we aim to provide timely
guidance on how to conduct high-quality GxE research using PGSs. In this article,
we have two main objectives. First, we outline several concerns associated with
performing GxE research that future work may benefit from considering. Second,
we offer some guidelines for designing, implementing, and interpreting high-quality
GxE research using PGSs.

The Standard GxE Model

We consider some outcome, Y, to be a function of an individual’s genotype, G, and
some (potentially continuously varying) environmental exposure, E. We generically
describe this data-generating model as

E(Y| . . . ) = f (G, E). (1)

Equation (1) accommodates both complex interplay between genotype and envi-
ronment as well as outcomes that are not normally distributed (e.g., Y may have
a Bernoulli distribution). We supplement this simple model with a few crucial
assumptions. We assume that we have reasonable proxies available for G and E and

sociological science | www.sociologicalscience.com 466 September 2020 | Volume 7



Domingue et al. Polygenic Scores and Environments

some identifiable approximation to f (). We comment on each of these assumptions
below.

With respect to G, we assume that we can characterize genetic influence on the
trait as a PGS,

PGSi = ∑ β j(N Alleles)ij,

that is, a sum wherein the number (N) of alleles (0, 1, or 2) that an individual i has for
each single nucleotide polymorphism (SNP) j is weighted by the effect, β j, identified
via GWAS. We note a few assumptions implicit in the above. We are focusing on
traits that have a genetic architecture appropriately characterized by effects that are
additive with respect to one another (although they may be nonadditive in terms of
their potential to interact with environmental contexts) and dispersed over many
loci. We view the assumption of additivity as an acceptable simplification given
both the success of additive GWAS and the relative lack of strong empirical support
for dominance or epistasis (i.e., gene–gene interaction) models (Polderman et al.
2015).

The assumption that genetic effects spread over many loci is not especially
restrictive. Empirical work has indicated that many traits of interest in population
health—body mass index, cardiovascular disease—are highly polygenic. Not all
traits necessarily have this characteristic; consider, for example, monogenic diseases
such as cystic fibrosis. However, as the sample size of the GWAS used to generate
a PGS increases, weights (i.e., β j) for SNPs that are not relevant to the phenotype
of interest will go toward zero; thus, a summative approach can still potentially
be used in such cases. Moreover, much of our discussion still applies when using
genetic predictors constructed from a smaller number of variants or even using a
single variant allele count (e.g., Boardman et al. 2012; Rosenquist et al. 2015).

We also note that GWAS results (i.e., β j) are themselves potentially a function of
both trait-specific biology and contextual features of the data used to derive them:
for example, the social and policy landscape governing behavior of participants
in the GWAS, selection issues associated with being a part of GWAS sample, et
cetera. (Mostafavi et al. 2020; Pirastu et al. 2020). PGSs index the genetic propensity
within the environmental context and demographic characteristics of participants
in the original discovery GWAS on which the PGS is constructed.3 An interaction
between PGS and environment may then indicate that the influence of genetic
factors on the outcome is larger in some environments than others, that the sample
in one environment is more similar to the sample from the discovery GWAS than
in others, or some mixture of the two. This ambiguity regarding interpretation
is important to keep in mind when findings from polygenic score research are
interpreted. However, we focus the current article on inferential and statistical
issues pertaining to the samples in which the PGSs are constructed and analyzed
(i.e., we do not focus on the potential mismatch between that sample and the GWAS
discovery sample).

With respect to E, we assume that researchers use specific measures of the
environment, which we denote ENV. At present, research typically focuses on
variation in measured environments that have relatively large main effects on Y. We
consider this topic in detail later. In general, we emphasize that there are numerous
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challenges associated with identification of the appropriate ENV in GxE research
(Boardman, Daw, and Freese 2013). The identification of appropriate ENV measures
merits additional scrutiny in future work. Following selection of a candidate ENV,
more questions follow. Are we measuring the environmental characteristic at the
appropriate level (e.g., household vs. neighborhood vs. community)? Are we
measuring a salient exposure given the respondents’ ages? Can we measure the
environmental exposure of interest with high fidelity? Are the exposures and
contexts of interest correlated with other, unmeasured, environmental or genetic
variables that are themselves the driving forces in the identified GxE?

Finally, we assume that the unknown function f () is well approximated by
a relatively simple model. In particular, many GxE studies aim to shed light on
Equation (1) using regression models of the form

E(Y| . . . ) = b0 + b1 · PGS + b2 · ENV + b3 · PGS · ENV + covariates. (2)

The aim is to have Equation (2) elucidate key properties of the (unknown) data-
generating process, even if Equation (2) is only a rough approximation of Equa-
tion (1). There are several concerns that apply to such regression models. We review
two important issues that have been the subject of previous scrutiny below before
then considering several novel issues of specific relevance when conducting GxE
studies in the next section.

First, environmental exposures are typically partly endogenous (Jaffee and Price
2007), creating complex patterns of correlations between genes, focal environments,
and other relevant exposures that lead to inferential challenges for the identification
of GxE. We do not provide an in-depth treatment of this issue here as it has been
discussed in depth elsewhere (Briley et al. 2019; Dudbridge and Fletcher 2014;
Fletcher and Conley 2013). The question of endogeneity is, of course, closely related
to the question of whether the measured environment that statistically moderates
PGS effects has a causal effect. This is of course a crucial question; whether the
effect is causal has direct implications for whether direct manipulation of that en-
vironment will produce changes in the genotype–phenotype association. Second,
misspecification bias is a generic problem that introduces additional complexities
in the case of interaction research. For example, care must be taken to distinguish
between models containing interactions between two variables versus those with
no interactions but nonlinear (e.g., quadratic) terms in one or both of the two vari-
ables (Lubinski and Humphreys 1990; MacCallum and Mar 1995). In particular,
GxE research must also attend to the issue raised by Keller (2014) focusing on the
covariates included in Equation (2). When covariates are included in Equation (2),
specification error may result if additional interaction terms between the covariates
and both E and the PGS are not included. This is because the main effects of the
covariates are insufficient controls in the case where there is covariation between
both the covariate and genotype or the covariate and the environment. Fortu-
nately, there is a straightforward solution. Researchers simply need include the full
suite of interaction terms between the PGSs and the covariates when estimating
Equation (2).
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Study Design Issues in GxE Research

The Environmental Exposure

The problem. A great deal of research in the social sciences focuses exclusively
on the effects of environments. For example, there is substantial interest in the
effects of poverty, reflected primarily in the home environment of a young child,
on the developing brain and related cognitive functioning (Duncan and Magnuson
2012; Johnson, Riis, and Noble 2016). GxE research has tended to emphasize
environmental variables, like poverty, for which large main effects have been well
documented (Barr et al. 2018; Gould et al. 2018; Musci et al. 2019). However, the
environmental features having large main effects need not also be the features that
lead to nuanced GxE effects. GxE research may benefit from additional attention
to the theorized nature of the candidate environmental variables deployed in GxE
research.

To better frame our argument, we consider two stylized patterns of GxE interac-
tion. We emphasize here that these two patterns are not an exhaustive taxonomy
of GxE interaction. Rather, they serve as illustrations of the considerations that we
encourage. First, consider GxE interactions in which the environmental functions as
a “dimmer” on genetic effects. Dimmers, as in switches responsible for dimming or
brightening lights, may magnify or constrict genetic effects on an outcome without
changing their sign. Investigating dimmer-type GxE may be of high substantive
interest in many contexts. For instance, it is of strong practical and theoretical
importance to determine whether an educational policy with a robust positive aver-
age effect for the population disproportionally benefits children at highest genetic
risk or those at lowest genetic risk or has uniform effect across the spectrum of
genotypes.

However, as we discuss at greater length in the subsection on coarsened out-
come variables, it is also important to be vigilant about the potential for GxE to arise
as an artifact of more general effects on the distribution of the observed outcome
itself. For instance, suppose the educational policy of interest is associated with an
appreciable increase in both the mean and variation of math achievement in the
student population. It is then possible that the intervention has increased the effect
of the PGS on math achievement (i.e., a positive b3 estimate in Eq. [2]) simply as a
byproduct of more general increases in variation in math achievement. Because con-
ventional ordinary least squares methods are blind to this type of heteroscedasticity,
the concomitant increase in non-PGS variance may go overlooked.

Second, consider GxE interactions in which the environment functions as an
image-inverting “lens” on genetic effects. An environment acts as such a lens when
the direction of the effect of the PGS differs across the range of that environment.
We refer to these environments as lenses based on the optical notion of a lens; in
particular, certain glass lenses invert the orientation of objects.4 When considering
lenses, the relative effect of a given genotype may be positive for a “low” level of the
relevant environmental exposure and negative for “high” levels of the exposure, or
vice versa. This has led to the hypothesis that what qualifies as a high- or low-risk
genotype may depend upon the environmental context (Belsky and Pluess 2009;
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Ellis et al. 2011; Obradović and Boyce 2009). Note that an environment may function
as a lens even when it has a limited main effect.

Researchers frequently conceptualize environments to operate as lenses as a
theoretical motivation for doing GxE research, and yet, in practice, many of the
environmental measures typically used in GxE studies may be conceptually closer to
the dimmer category. Moreover, the selection of PGS effects for examining lens-type
GxE may be particularly challenging given that we construct PGSs from GWASs
that only include main effects of SNPs (although this is perhaps changing in ways
we expand upon below). This limitation may act as a strict limiting factor when
it comes to identifying GxE with polygenic scores. A related issue is that, if the
environmental context of the participants in the GWAS sample used to construct
the PGS is similar to that in the test sample used to estimate GxE, then it is unlikely
to include SNPs that demonstrate lens-type patterns, as the main effects of these
SNPs will be close to zero.

We can also understand the difference between a dimmer and a lens in terms
of their effect on the rank ordering of outcomes. All else being equal, a dimmer
is order-preserving; that is, it preserves the order of the genotypes at different
levels of the environment. Variation in the dimmer serves to vary the distance,
in the outcome metric, between different levels of the PGS but never changes the
rank orderings of the levels. In contrast, a lens reverses the order of genotypes;
a PGS that predicts an outcome near the top of the distribution at one level of
environmental exposure will predict an outcome near the bottom at another level
of environmental exposure. Our dimmer/lens typology is similar in many respects
to the ordinal/disordinal typology previously suggested (Widaman et al. 2012) but
may be a useful conceptual distinction as GxE research becomes more common in
the social sciences.

Recommendations. Conceptually, researchers will benefit from being attentive as
to the form of GxE they expect; for example, is the candidate environment expected
to operate as a lens, as a dimmer, or according to some more complex functional
form? In our experience, GxE researchers will tend to observe that environments
with large main effects on a phenotype act as dimmers. Such environments will
moderate the magnitude of the effect of the polygenic score on the outcome without
changing its sign. Although these observations may be of value, they need to be
distinguished from the more dramatic patterns of sign reversal of PGS effects in
different environments that have received a great deal of conceptual attention. In
studies seeking to identify lens-type patterns (Troth et al. 2018), both the genetic
and the environmental components are of crucial importance for testing hypotheses
in which the environmental context determines whether a given genotype is risky
or advantageous.

Analytically, we offer several suggestions that might be of interest in future
work. We first emphasize the potential for analyses that take advantage of environ-
mental variation without identifying a specific environmental feature of interest. In
situations wherein individuals cluster into some unit, researchers may first want
to consider the level of empirical support for GxE based on relatively omnibus
measures of the environment. For example, one might test for variation observed
in the relationship between phenotype and polygenic score across environmental
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units (e.g., schools or census tracts); see Trejo et al. (2018) for one such example.
Such analyses are informative in that they offer preliminary guidance on whether
specific features of the environments deserve additional scrutiny as possible GxE
targets.

Yet another approach that researchers might want to consider involves anal-
yses of heritability and genetic correlation as captured by genomic techniques
(Grotzinger et al. 2019; Yang et al. 2011). Polygenic scores collapse information
from across the genome into a composite designed to predict a specific outcome
in a novel data set. Because PGSs are constructed using a large number of GWAS
regression weights that themselves are estimated with error, PGS prediction is
biased downward in novel samples (and biased upward in the original GWAS
samples). In contrast, genomic heritability and genetic correlation estimates are
constructed using methods related to mixed effects modeling and are unbiased by
measurement error. Such analyses can be used to, for example, study changing
patterns of heritability (Tropf et al. 2017) across environments. Although analyses of
heritability and genetic correlation do not provide scores for individual participants
(because they estimate random effects to represent population variation, rather than
individual estimates [de Vlaming et al. 2017]), they can still offer information about
the way that genotypes are related to phenotypes.

We also note the increase in methodologies focused on identifying genetic
variants that are associated with the amount of variation in the outcome rather than
strictly the level (Conley et al. 2018; Wang et al. 2019; Yang et al. 2012; Young,
Wauthier, and Donnelly 2018). Such approaches are generating data that may
be useful in future GxE work. A natural question to ask of the genetic variants
identified in such studies is whether environments interact with such variants
to further modulate variation in the outcome. Although such approaches will
presumably also involve novel methodological challenges, they are an exciting new
resource that could be used to study gene–environment interplay.

Coarsened Outcome Variables

The problem. Characteristics of the distribution of Y may have crucial implica-
tions for conducting GxE studies. When Y is a discrete outcome coarsened from
an underlying continuous variable, researchers encounter an opportunity to mis-
interpret affirmative findings of GxE. For simplicity of exposition, we focus on
the simplest case where Y is dichotomous (though the phenomenon extends to
coarsened variables that take more than two values). Suppose a dichotomous out-
come Y is a coarsened version of some continuously varying latent indicator Y∗
(so Y = 1 if Y∗ > λ for some scalar λ and 0 otherwise). For example, Y might
be obesity or college completion (in which case Y∗ would be body mass index or
years of schooling, respectively). Suppose we estimate Equation (2) with ordinary
least squares using Y∗ instead of Y and yield a nonzero and statistically significant
b3. How should we interpret such a finding? One possibility is that a finding of
GxE suggests differences in the slope of association between G and Y∗. This, we
argue, is what researchers generally have in mind when conducting studies testing
for GxE. However, a second possibility is that a purely environmental shock may
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shift the intercept of the association line between G and Y∗, thus resulting in a GxE
finding (i.e., a nonzero and statistically significant b3) with different interpretation.

We illustrate the basic problem in Figure 1. When we examine relationships
between PGS and outcome in the context of the continuously measured version—Y∗
in Figure 1A—we observe a constant linear association with genotype across two
environments. However, when we observe a dichotomized version of the outcome—
Y in Figure 1B—we have a relationship that is more challenging to interpret. In
particular, Figure 1B suggests GxE when a linear probability model is used (i.e.,
the dotted curves are not parallel). In contrast, when a logistic regression model is
used, we obtain unbiased estimates of GxE (i.e., b3) but they may suffer from low
power (and large confidence intervals) due to low variability in the dichotomized
outcome at some regions of the environmental measure. This problem may be
even more severe when gene–environment correlation results in a large shift in the
distributions of the PGS along the range of the environmental measure.

Findings such as those in Figure 1B are worth noting, and they may be highly
relevant in cases where the continuous Y∗ is of less interest than the dichotomized
Y (e.g., college completion may well matter more than years of schooling) or when
Y∗ is latent. However, we also need not confuse matters by misunderstanding
the nature of the associations in question. If findings are driven by differences
in intercepts and relatively consistent slopes, as in Figure 1A, this is important
information to report. We expect that GxE research will benefit from distinguishing
between these two possibilities; see also our discussion of this issue in an empirical
context elsewhere (Trejo et al. 2018).5

Recommendations. When research uses coarsened outcome variables due to
substantive interest in the coarsened outcome themselves (e.g., credentials, obesity
indicators), sensitivity analyses that probe the issue considered here based on the
underlying (noncoarsened) variable are essential. Such analyses will help to better
contextualize findings from coarsened variables. In analysis of binary outcomes
for which no underlying continuous variable is available (i.e., case-control status),
utilization of multiple methods, such as both logistic and linear probability models,
may be used to probe for sensitivity of the results to the functional form of the
model. This will be especially important when the environment is itself nontrivially
correlated with the outcome under study.

Although we do not focus here on coarsened outcomes that are nonbinary
(e.g., ordered categorical, nominal, or censored/truncated outcomes), we note that
many of the concerns raised here would be of relevance in those cases as well.
At a minimum, sensitivity analyses probing the persistence of findings across a
range of model specifications may be valuable. For example, in an analysis of the
highest math course taken by high schools students (Harden et al. 2020), a variety
of models—cumulative link, adjacent-category logit, locally estimated scatterplot
smoothing (LOESS) based on dichotomizations—were used in an attempt to in-
terrogate potential differences in course as a function of genotype when stratified
by school socioeconomic status. GxE analysis in the context of such coarsened
outcomes is likely to be challenging; future work describing methodological best
practices in this domain would be welcome.
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Figure 1: The challenge of studying GxE when using dichotomous outcomes. (A) True association between
PGS and continuously varying outcome Y∗. Densities show distributions above horizontal blue line for those
in high and low environments. (B) True associations and those estimated using either a logistic regression
model or a linear probability model when Y∗ has been dichotomized prior to analysis (Y = 1 when Y∗ > λ).
The linear probability model (lpm) produces the misimpression of GxE (nonparallel regression lines). The
logistic regression model does not suffer from this bias but may still suffer from large standard errors and
low power when we observe low variability in the dichotomous Y variable in one of the environments.

Measurement Error

The problem. Measurement error acts both to bias associated parameter esti-
mates toward zero (Hutcheon, Chiolero, and Hanley 2010) and to distort power
calculations. In the specific context of GxE studies, there are several concerns.
Measurement error exists in both the operationalized PGS and ENV variables of
Equation (2). Measurement error in G, which results from imprecise estimates of
the GWAS betas used to construct the PGS, has received some attention (Conley
et al. 2016; DiPrete, Burik, and Koellinger 2018; Tucker-Drob 2017). However, less
attention has been paid to measurement error in E. Homoscedastic measurement
error in E has implications for power (matters may be further complicated in the
presence of nonhomoscedastic measurement error, but we focus on the simpler case
here).

Figure 2 is a simple illustration of this via a simulation study.6 We assume that
we measure both the PGS and the target environmental variable with error. We
focus on variation in the reliability of the environmental measure (the x axis) and
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Figure 2: Reduction in power as a function of measurement error in both PGS and ENV. Left and right panels
focus on relatively low (alpha = 0.25) and high (alpha = 0.5) reliability polygenic scores. Data-generating
equation is shown in left-hand panel.

choose two levels of reliability (which we index as alpha) of 0.25 (on left) and 0.5 (on
right) for the PGS; we view these reliabilities as representative of relatively weak
and relatively strong polygenic scores given existing GWAS. The main takeaway is
that ignoring measurement error with respect to the environment inevitably leads
to inflated power calculations.

Let us first focus our attention on a PGS with relatively high reliability by current
PGS standards (alpha = 0.5) in the case where we have 1,000 respondents. We first
assume that there is no error in our environmental measure (region emphasized
in gray rectangle). In such a case, power is below standard levels of acceptability
(power = 0.8). As the reliability of our environmental measure declines, however,
power becomes increasingly poor. Even when the environment is measured with
decent reliability (alpha = 0.7), power is greatly reduced (power = 0.4). In the case
where the PGS is of lower reliability, power is even worse (power = 0.2 for an
environmental measure of reliability alpha = 0.7). When the PGS is measured with
substantial error (alpha = 0.25), even relatively large samples (when considering
population-based studies) of N = 10,000 will suffer from power limitations when
the environment is also measured with substantial error. These calculations are
based upon a toy model that might not be relevant in all cases, but given that
interaction studies are power-hungry even without considering measurement error
(McClelland and Judd 1993), our model emphasizes the need to carefully consider
whether one has reasonable power before conducting GxE studies.
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Recommendations. We recommend that power analyses be the norm (and not
the exception) in GxE research. Traditional power analyses are used to inform key
design features, such as the sample size, prior to the implementation of a study. In
contrast, power analyses of the type considered here offer information about the
power of a study design given existing data (e.g., the sample sizes available from
large longitudinal studies such as the HRS and Add Health) and key assumptions
about the relevant parameters. In particular, power analyses specifically designed to
offer insights into the level of power available given measurement error in both the
polygenic score and the environment would be valuable additions when planning
analyses of data that are already available. As Figure 2 illustrates, a failure to
consider measurement error can lead to inflated estimates of power. Even for
samples of several thousand, GxE analyses will be weakly powered absent highly
penetrant genetic predictors or environments measured with little noise. Such
power analyses are not cure-alls; rather, they hopefully help researchers to better
understand the limitations that they face—specifically, the likelihood of observing
false positives—in a given context.

Sample Selection Processes and Internal and External Validity

The problem. Selection processes complicate inference in observational settings in
a number of ways, and studies of GxE are no exception. An often-underappreciated
point is that sample selection issues threaten both external and internal validity.
We discuss several (potentially overlapping) types of selection that are particularly
relevant for GxE research. These sample selection processes limit the population to
which GxE findings can be generalized and may lead to spurious results via collider
bias (Elwert and Winship 2014). Notably, sample selection may pose a threat both
in the discovery GWAS used to identify the betas needed to construct a PGS and in
the prediction sample in which the PGS is actually constructed and used to estimate
GxE.

We begin with mortality selection. Such selection occurs when a nonrandom
subset is lost to mortality and therefore not observed. In studies of older respondents
(e.g., the HRS), mortality selection tends to make the resulting sample “healthier,
wealthier, and wiser” (Zajacova and Burgard 2013). Mortality selection is especially
relevant to GxE research because genotyping is a relatively recent technology;
participants in longstanding studies needed to survive long enough to make it into
the genotyped subsample. Indeed, there is evidence to suggest that GxE findings
may be sensitive to the presence of mortality selection (Domingue et al. 2017). When
studying health-related traits, especially in older populations, we need to consider
mortality selection’s role in shaping findings (Oliynyk 2019). In scenarios wherein
mortality can be readily modeled with existing data, one possible analytic solution
is to use inverse probability weighting (van der Wal and Geskus 2011) to correct for
the role of mortality selection. A related issue is that individuals with certain genetic
profiles—for example, those with high genetic liabilities for schizophrenia—may be
underrepresented in various data sources (Martin et al. 2016; Meisner, Kundu, and
Chatterjee 2019; Pirastu et al. 2020; Taylor et al. 2018). Such selection can also lead
to issues of both bias and generalizability in subsequent studies.
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A second issue is that demographic factors play a role in who gets included
in genetic studies. This, in turn, has implications with respect to the populations
to which results using genetic subsamples may generalize. Of particular note is
the massive overrepresentation of European-descent individuals in both GWAS
(Mills and Rahal 2019) and PGS (Duncan et al. 2019) studies. This problem is
due to several factors, including both the overrepresentation of European-descent
individuals in genetic studies and the fact that differences in linkage disequilibrium
across groups leads to the GWAS findings performing better in the (predominantly
European) samples from which they are derived. Efforts (Mills and Rahal 2020)
are underway to monitor (with the hope of then remedying) this problem. In the
meantime, researchers have noted that adoption of polygenic scores in precision
medicine may exacerbate preexisting health disparities (Martin et al. 2019). A focus
on homogeneous samples may lead to issues in GxE if it either severely constricts the
relevant artificial variance or even potentially undermines the theoretical motivation
suggesting a particular research question (which may necessitate a more diverse
sample). In any event, equity concerns need to be in the foreground of genetics
research; GxE is no exception.

These selection problems offer both internal and external validity threats to
GxE studies that are important to consider carefully. An additional concern is that
nonrandom selection into the analytic samples used in empirical studies may lead
to reduced environmental variation further challenging attempts to make accu-
rate inferences regarding GxE. As an illustration, we consider two key adolescent
environments—the socioeconomic circumstances of home (Belsky et al. 2018) and
the disadvantage of one’s residential neighborhood (Belsky et al. 2019), both from
Wave I of Add Health (Harris et al. 2019)—that may be of interest. As a function
of the way the analytic sample becomes a selected portion of the full sample, we
observe a decrease in environmental variance. These decreases will lead to even
further reductions in our power to detect GxE effects; in particular, power analyses
motivated by environmental variation observed in the full sample are likely to
overstate true power given that empirical work will then take place with reduced
environmental variation. Beyond power concerns, such selection can lead to a
reduction in density in certain regions of the distribution of the measured environ-
ment that will increase the challenge of identifying the relevant functional form in
that region.

Recommendations. Issues concerning selection require careful attention. Figure 3
suggests that they may have implications that need to be accounted for in other as-
pects of study design (i.e., are power analyses based on the appropriate quantities?).
We further suggest two ways that research may approach these issues. First, the
selection issues discussed here have implications for generalizability. Some forms
of this problem are obvious. Given, for example, the problems of analysis in an-
cestrally heterogeneous samples and the subsequent work on samples of relatively
limited genetic diversity, it would be imprudent to interpret GxE findings from
such a study as applying in the broader population containing a fuller spectrum of
genetic diversity. But it may also be the case that selection introduces other factors
that limit generalizability. For example, long-lived smokers may be quite different
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Figure 3: Distributions of two key environmental variables (household socioeconomic status [SES] and
neighborhood disadvantage) taken from Wave I of Add Health (Harris et al. 2019). Note the reduction
in variation of the distribution for the analytic sample (in red) versus that of the full sample (in blue).
Reductions in the standard deviation are 11 percent for SES and 14 percent for neighborhood disadvantage;
in variance terms, the reductions are 20 percent and 26 percent, respectively.

from the general population (Levine and Crimmins 2014); inference based on such
samples may be misleading.

Second, on the analytic side, attempts to model the relevant selection processes
may lead to direct insights into the degree of generalizability of patterns. For exam-
ple, researchers may examine how results change when using formal techniques
that correct for selection (e.g., inverse probability weighting [Cole and Hernán
2008]). Even less comprehensive analyses of selection processes may lead to in-
sights about the nature of the analytic sample and offer guides to generalization
that researchers can communicate alongside the relevant empirical results.

Conclusion

GxE characterizes both the environmental contingency of genetically linked pro-
cesses and the genetic contingency of environmentally linked processes. In our view,
GxE studies involving human behavior and polygenic scores may offer valuable
insights but are also at risk of repeating many of the mistakes made by previous eras
of research (e.g., the candidate gene era). Our goal has been to emphasize the need
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for careful thinking about the rationale and methods underlying investigations of
GxE.

In particular, we highlighted four issues—selection of the relevant environment,
analysis of coarsened outcomes, the role of measurement error, and issues of sample
selection—that deserve additional scrutiny in future research. We also attempted
to offer recommendations for beginning to address each problem. We readily
acknowledge that ours are a relatively modest set of recommendations that will not
fully resolve the vast range of analytic and inferential challenges associated with
GxE research with PGSs.

An overarching goal of research examining the combined genetic and envi-
ronmental contributions to human behavior is to help construct useful models of
human behavior. In our view, useful models avoid unnecessary complexity when
accounting for messy data. At its best, GxE research can help inform the construc-
tion of such models by parsimoniously showcasing complexities from empirical
reality that need to be accounted for. For instance, GxE research can help reveal
important heterogeneity in developmental processes, treatment responses, and
policy effects. To be informative, however, we must exercise care. Otherwise, GxE
research threatens to introduce confusion into the already challenging landscape of
social and behavioral science research.

Notes

1 Exactly how predictive a PGS is of a given trait depends on both on the trait’s heritability
and the sample size of the GWAS used to derive the effect size estimates; see Figure 2 of
Harden and Koellinger (2020).

2 We note that one could alternatively discuss environmental effects differing as a function
of genetics; we utilize the original formulation in this article but note that the latter may
occasionally be the more germane.

3 In practice, polygenic scores may contain information on correlated nongenetic factors
(e.g., population stratification and dynastic effects like genetic nurture) in addition to
true genetic risk (Morris et al. 2020).

4 Specifically, convex lenses have such image-inverting properties. Here we use “lens” as
shorthand for convex lens but note that concave lenses do not have this property.

5 For a similar observation in a different context, see https://twitter.com/Joni_Coleman/
status/1220332653599186946?s=20.

6 Code available here:
https://gist.github.com/ben-domingue/6f14e3c4532ecb62df5f6e0c44c60411.

References

Barr, Peter B., Judy Silberg, Danielle M. Dick, and Hermine H. Maes. 2018. “Childhood
Socioeconomic Status and Longitudinal Patterns of Alcohol Problems: Variation across
Etiological Pathways in Genetic Risk.” Social Science & Medicine 209:51–58. https:
//doi.org/10.1016/j.socscimed.2018.05.027.

Belsky, Daniel W., Avshalom Caspi, Louise Arseneault, David L. Corcoran, Benjamin W.
Domingue, Kathleen Mullan Harris, Renate M. Houts, Jonathan S. Mill, Terrie E. Moffitt,

sociological science | www.sociologicalscience.com 478 September 2020 | Volume 7

https://twitter.com/Joni_Coleman/status/1220332653599186946?s=20
https://twitter.com/Joni_Coleman/status/1220332653599186946?s=20
https://gist.github.com/ben-domingue/6f14e3c4532ecb62df5f6e0c44c60411
https://doi.org/10.1016/j.socscimed.2018.05.027
https://doi.org/10.1016/j.socscimed.2018.05.027


Domingue et al. Polygenic Scores and Environments

Joseph Prinz, Karen Sugden, Jasmin Wertz, Benjamin Williams, and Candice L. Odgers.
2019. “Genetics and the Geography of Health, Behaviour and Attainment.” Nature Human
Behaviour 3:576–86. https://doi.org/10.1038/s41562-019-0562-1.

Belsky, Daniel W., Benjamin W. Domingue, Robbee Wedow, Louise Arseneault, Jason D.
Boardman, Avshalom Caspi, Dalton C. Conley, Jason M. Fletcher, Jeremy Freese, Pamela
Herd, Terrie E. Moffitt, Richie Poulton, Kamil Sicinski, Jasmin Wertz, and Kathleen
Mullan Harris. 2018. “Genetic Analysis of Social-Class Mobility in Five Longitudinal
Studies.” Proceedings of the National Academy of Sciences 115(31):E7275–84. https://doi.
org/10.1073/pnas.1801238115.

Belsky, Daniel W., and K. Paige Harden. 2019. “Phenotypic Annotation: Using Polygenic
Scores to Translate Discoveries from Genome-Wide Association Studies from the Top
Down.” Current Directions in Psychological Science 28(1):82–90. https://doi.org/10.
1177/0963721418807729.

Belsky, Jay, and Michael Pluess. 2009. “Beyond Diathesis Stress: Differential Susceptibility to
Environmental Influences.” Psychological Bulletin 135(6):885–908. https://doi.org/10.
1037/a0017376.

Boardman, Jason D., Lisa L. Barnes, Robert S. Wilson, Denis A. Evans, and Carlos F. Mendes
de Leon. 2012. “Social Disorder, APOE-E4 Genotype, and Change in Cognitive Function
among Older Adults Living in Chicago.” Social Science & Medicine 74(10):1584–90. https:
//doi.org/10.1016/j.socscimed.2012.02.012.

Boardman, Jason D., Jonathan Daw, and Jeremy Freese. 2013. “Defining the Environment in
Gene–Environment Research: Lessons from Social Epidemiology.” American Journal of
Public Health 103(S1):S64–72. https://doi.org/10.2105/AJPH.2013.301355.

Boyle, Evan A., Yang I. Li, and Jonathan K. Pritchard. 2017. “An Expanded View of Complex
Traits: From Polygenic to Omnigenic.” Cell 169(7):1177–86. https://doi.org/10.1016/
j.cell.2017.05.038.

Braudt, David B., and Kathleen Mullan Harris. 2018. “Polygenic Scores (PGSs) in the National
Longitudinal Study of Adolescent to Adult Health (Add Health)–Release 1.” Carolina
Population Center, University of North Carolina at Chapel Hill. https://doi.org/10.
17615/C6M372.

Briley, Daniel A., Jonathan Livengood, Jaime Derringer, Elliot M. Tucker-Drob, R. Chris
Fraley, and Brent W. Roberts. 2019. “Interpreting Behavior Genetic Models: Seven
Developmental Processes to Understand.” Behavior Genetics 49(2):196–210. https://doi.
org/10.1007/s10519-018-9939-6.

Cesarini, David, and Peter M. Visscher. 2017. “Genetics and Educational Attainment.” NPJ
Science of Learning 2(1):4. https://doi.org/10.1038/s41539-017-0005-6.

Chabris, Christopher F., James J. Lee, David Cesarini, Daniel J. Benjamin, and David I.
Laibson. 2015. “The Fourth Law of Behavior Genetics.” Current Directions in Psychological
Science 24(4):304–12. https://doi.org/10.1177/0963721415580430.

Cole, Stephen R., and Miguel A. Hernán. 2008. “Constructing Inverse Probability Weights
for Marginal Structural Models.” American Journal of Epidemiology 168(6):656–64. https:
//doi.org/10.1093/aje/kwn164.

Conley, Dalton, and Jason Fletcher. 2017. The Genome Factor: What the Social Genomics
Revolution Reveals about Ourselves, Our History, and the Future. Princeton: Princeton
University Press. https://doi.org/10.1515/9781400883240.

Conley, Dalton, Rebecca Johnson, Ben Domingue, Christopher Dawes, Jason Boardman, and
Mark Siegal. 2018. “A Sibling Method for Identifying VQTLs.” PloS One 13(4):e0194541.
https://doi.org/10.1371/journal.pone.0194541.

sociological science | www.sociologicalscience.com 479 September 2020 | Volume 7

https://doi.org/10.1038/s41562-019-0562-1
https://doi.org/10.1073/pnas.1801238115
https://doi.org/10.1073/pnas.1801238115
https://doi.org/10.1177/0963721418807729
https://doi.org/10.1177/0963721418807729
https://doi.org/10.1037/a0017376
https://doi.org/10.1037/a0017376
https://doi.org/10.1016/j.socscimed.2012.02.012
https://doi.org/10.1016/j.socscimed.2012.02.012
https://doi.org/10.2105/AJPH.2013.301355
https://doi.org/10.1016/j.cell.2017.05.038
https://doi.org/10.1016/j.cell.2017.05.038
https://doi.org/10.17615/C6M372
https://doi.org/10.17615/C6M372
https://doi.org/10.1007/s10519-018-9939-6
https://doi.org/10.1007/s10519-018-9939-6
https://doi.org/10.1038/s41539-017-0005-6
https://doi.org/10.1177/0963721415580430
https://doi.org/10.1093/aje/kwn164
https://doi.org/10.1093/aje/kwn164
https://doi.org/10.1515/9781400883240
https://doi.org/10.1371/journal.pone.0194541


Domingue et al. Polygenic Scores and Environments

Conley, Dalton, Thomas M. Laidley, Jason D. Boardman, and Benjamin W. Domingue. 2016.
“Changing Polygenic Penetrance on Phenotypes in the 20th Century among Adults in the
US Population.” Scientific Reports 6:30348. https://doi.org/10.1038/srep30348.

de Vlaming, Ronald, Magnus Johannesson, Patrik K. E. Magnusson, M. Arfan Ikram, and
Peter M. Visscher. 2017. “Equivalence of LD-Score Regression and Individual-Level-
Data Methods.” bioRxiv. Preprint, submitted October 31. https://www.biorxiv.org/
content/10.1101/211821v1.

DiPrete, Thomas A., Casper A. P. Burik, and Philipp D. Koellinger. 2018. “Genetic In-
strumental Variable Regression: Explaining Socioeconomic and Health Outcomes in
Nonexperimental Data.” Proceedings of the National Academy of Sciences 115(22):E4970–79.
https://doi.org/10.1073/pnas.1707388115.

Domingue, Benjamin W., Daniel W. Belsky, Amal Harrati, Dalton Conley, David Weir, and
Jason Boardman. 2017. “Mortality Selection in a Genetic Sample and Implications
for Association Studies.” International Journal of Epidemiology 46(4):1285–94. https:
//doi.org/10.1093/ije/dyx041.

Dudbridge, Frank. 2013. “Power and Predictive Accuracy of Polygenic Risk Scores.” PLoS
Genetics 9(3):e1003348. https://doi.org/10.1371/journal.pgen.1003348.

Dudbridge, Frank. 2016. “Polygenic Epidemiology.” Genetic Epidemiology 40(4):268–72.
https://doi.org/10.1002/gepi.21966.

Dudbridge, Frank, and Olivia Fletcher. 2014. “Gene-Environment Dependence Creates
Spurious Gene-Environment Interaction.” American Journal of Human Genetics 95(3):301–7.
https://doi.org/10.1016/j.ajhg.2014.07.014.

Duncan, Greg J., and Katherine Magnuson. 2012. “Socioeconomic Status and Cognitive
Functioning: Moving from Correlation to Causation.” Wiley Interdisciplinary Reviews:
Cognitive Science 3(3):377–86. https://doi.org/10.1002/wcs.1176.

Duncan, L., H. Shen, B. Gelaye, J. Meijsen, K. Ressler, M. Feldman, R. Peterson, and B.
Domingue. 2019. “Analysis of Polygenic Risk Score Usage and Performance in Diverse
Human Populations.” Nature Communications 10(1):3328. https://doi.org/10.1038/
s41467-019-11112-0.

Duncan, Laramie E., and Matthew C. Keller. 2011. “A Critical Review of the First 10 Years of
Candidate Gene-by-Environment Interaction Research in Psychiatry.” American Journal of
Psychiatry 168(10):1041–49. https://doi.org/10.1176/appi.ajp.2011.11020191.

Ellis, Bruce J., W. Thomas Boyce, Jay Belsky, Marian J. Bakermans-Kranenburg, and Mar-
inus H. Van Ijzendoorn. 2011. “Differential Susceptibility to the Environment: An
Evolutionary–Neurodevelopmental Theory.” Development and Psychopathology 23(01):7–
28. https://doi.org/10.1017/S0954579410000611.

Elwert, Felix, and Christopher Winship. 2014. “Endogenous Selection Bias: The Problem
of Conditioning on a Collider Variable.” Annual Review of Sociology 40:31–53. https:
//doi.org/10.1146/annurev-soc-071913-043455.

Feldman, M. W., and R. C. Lewontin. 1975. “The Heritability Hang-Up.” Science
190(4220):1163–68. https://doi.org/10.1126/science.1198102.

Fletcher, Jason M., and Dalton Conley. 2013. “The Challenge of Causal Inference in Gene–
Environment Interaction Research: Leveraging Research Designs from the Social Sciences.”
American Journal of Public Health 103(S1):S42–45. https://doi.org/10.2105/AJPH.2013.
301290.

Freese, Jeremy. 2018. “The Arrival of Social Science Genomics.” Contemporary Sociology
47(5):524–36. https://doi.org/10.1177/0094306118792214a.

sociological science | www.sociologicalscience.com 480 September 2020 | Volume 7

https://doi.org/10.1038/srep30348
https://www.biorxiv.org/content/10.1101/211821v1
https://www.biorxiv.org/content/10.1101/211821v1
https://doi.org/10.1073/pnas.1707388115
https://doi.org/10.1093/ije/dyx041
https://doi.org/10.1093/ije/dyx041
https://doi.org/10.1371/journal.pgen.1003348
https://doi.org/10.1002/gepi.21966
https://doi.org/10.1016/j.ajhg.2014.07.014
https://doi.org/10.1002/wcs.1176
https://doi.org/10.1038/s41467-019-11112-0
https://doi.org/10.1038/s41467-019-11112-0
https://doi.org/10.1176/appi.ajp.2011.11020191
https://doi.org/10.1017/S0954579410000611
https://doi.org/10.1146/annurev-soc-071913-043455
https://doi.org/10.1146/annurev-soc-071913-043455
https://doi.org/10.1126/science.1198102
https://doi.org/10.2105/AJPH.2013.301290
https://doi.org/10.2105/AJPH.2013.301290
https://doi.org/10.1177/0094306118792214a


Domingue et al. Polygenic Scores and Environments

Gould, Karen L., William L. Coventry, Richard K. Olson, and Brian Byrne. 2018. “Gene-
Environment Interactions in ADHD: The Roles of SES and Chaos.” Journal of Abnormal
Child Psychology 46(2):251–263. https://doi.org/10.1007/s10802-017-0268-7.

Grotzinger, Andrew D., Mijke Rhemtulla, Ronald de Vlaming, Stuart J. Ritchie, Travis T.
Mallard, W. David Hill, Hill F. Ip, Riccardo E. Marioni, Andrew M. McIntosh, Ian J. Deary,
Philipp D. Koellinger, K. Paige Harden, Michel G. Nivard, and Elliot M. Tucker-Drob.
2019. “Genomic Structural Equation Modelling Provides Insights into the Multivariate
Genetic Architecture of Complex Traits.” Nature Human Behaviour 3(5):513–25. https:
//doi.org/10.1038/s41562-019-0566-x.

Harden, K. Paige, Benjamin W. Domingue, Daniel W. Belsky, Jason D. Boardman, Robert
Crosnoe, Margherita Malanchini, Michel Nivard, Elliot M. Tucker-Drob, and Kathleen
Mullan Harris. 2020. “Genetic Associations with Mathematics Tracking and Persistence
in Secondary School.” NPJ Science of Learning 5(1):1–8. https://doi.org/10.1038/
s41539-020-0060-2.

Harden, K. Paige, and Philipp D. Koellinger. 2020. “Using Genetics for Social Science.”
Nature Human Behaviour 4:567. https://doi.org/10.1038/s41562-020-0862-5.

Harris, Kathleen Mullan, Carolyn Tucker Halpern, Eric A. Whitsel, Jon M. Hussey, Ley A.
Killeya-Jones, Joyce Tabor, and Sarah C. Dean. 2019. “Cohort Profile: The National
Longitudinal Study of Adolescent to Adult Health (Add Health).” International Journal of
Epidemiology 48(5):1415. https://doi.org/10.1093/ije/dyz115.

Hutcheon, Jennifer A., Arnaud Chiolero, and James A. Hanley. 2010. “Random Measurement
Error and Regression Dilution Bias.” BMJ 340:c2289. https://doi.org/10.1136/bmj.
c2289.

Jaffee, Sara R., and Thomas S. Price. 2007. “Gene–Environment Correlations: A Review of
the Evidence and Implications for Prevention of Mental Illness.” Molecular Psychiatry
12(5):432–42. https://doi.org/10.1038/sj.mp.4001950.

Johnson, Sara B., Jenna L. Riis, and Kimberly G. Noble. 2016. “State of the Art Review:
Poverty and the Developing Brain.” Pediatrics 137(4):e20153075. https://doi.org/10.
1542/peds.2015-3075.

Keller, Matthew C. 2014. “Gene × Environment Interaction Studies Have Not Properly
Controlled for Potential Confounders: The Problem and the (Simple) Solution.” Biological
Psychiatry 75(1):18–24. https://doi.org/10.1016/j.biopsych.2013.09.006.

Lambert, Samuel A., Laurent Gil, Simon Jupp, Scott C. Ritchie, Yu Xu, Annalisa Buniello, Gad
Abraham, Michael Chapman, Helen Parkinson, John Danesh, Jacqueline A. MacArthur,
and Michael Inouye. 2020. “The Polygenic Score Catalog: An Open Database for
Reproducibility and Systematic Evaluation.” medRxiv. Preprint, submitted May 23.
https://www.medrxiv.org/content/10.1101/2020.05.20.20108217v1.

Lee, James J., Robbee Wedow, Aysu Okbay, Edward Kong, Omeed Maghzian, Meghan
Zacher, Tuan Anh Nguyen-Viet, Peter Bowers, Julia Sidorenko, Richard Karlsson Linnér,
Mark Alan Fontana, Tushar Kundu, Chanwook Lee, Hui Li, Ruoxi Li, Rebecca Royer,
Pascal N. Timshel, Raymond K. Walters, Emily A. Willoughby, Loïc Yengo, Maris Alver,
Yanchun Bao, David W. Clark, Felix R. Day, Nicholas A. Furlotte, Peter K. Joshi, Kathryn
E. Kemper, Aaron Kleinman, Claudia Langenberg, Reedik Mägi, Joey W. Trampush,
Shefali Setia Verma, Yang Wu, Max Lam, Jing Hua Zhao, Zhili Zheng, Jason D. Boardman,
Harry Campbell, Jeremy Freese, Kathleen Mullan Harris, Caroline Hayward, Pamela
Herd, Meena Kumari, Todd Lencz, Jian’an Luan, Anil K. Malhotra, Andres Metspalu, Lili
Milani, Ken K. Ong, John R. B. Perry, David J. Porteous, Marylyn D. Ritchie, Melissa C.
Smart, Blair H. Smith, Joyce Y. Tung, Nicholas J. Wareham, James F. Wilson, Jonathan

sociological science | www.sociologicalscience.com 481 September 2020 | Volume 7

https://doi.org/10.1007/s10802-017-0268-7
https://doi.org/10.1038/s41562-019-0566-x
https://doi.org/10.1038/s41562-019-0566-x
https://doi.org/10.1038/s41539-020-0060-2
https://doi.org/10.1038/s41539-020-0060-2
https://doi.org/10.1038/s41562-020-0862-5
https://doi.org/10.1093/ije/dyz115
https://doi.org/10.1136/bmj.c2289
https://doi.org/10.1136/bmj.c2289
https://doi.org/10.1038/sj.mp.4001950
https://doi.org/10.1542/peds.2015-3075
https://doi.org/10.1542/peds.2015-3075
https://doi.org/10.1016/j.biopsych.2013.09.006
https://www.medrxiv.org/content/10.1101/2020.05.20.20108217v1


Domingue et al. Polygenic Scores and Environments

P. Beauchamp, Dalton C. Conley, Tõnu Esko, Steven F. Lehrer, Patrik K. E. Magnusson,
Sven Oskarsson, Tune H. Pers, Matthew R. Robinson, Kevin Thom, Chelsea Watson,
Christopher F. Chabris, Michelle N. Meyer, David I. Laibson, Jian Yang, Magnus Johan-
nesson, Philipp D. Koellinger, Patrick Turley, Peter M. Visscher, Daniel J. Benjamin, and
David Cesarini. 2018. “Gene Discovery and Polygenic Prediction from a Genome-Wide
Association Study of Educational Attainment in 1.1 Million Individuals.” Nature Genetics
50(8):1112–21. https://doi.org/10.1038/s41588-018-0147-3.

Levine, Morgan, and Eileen Crimmins. 2014. “Not All Smokers Die Young: A Model for
Hidden Heterogeneity within the Human Population.” PloS One 9(2):e87403. https:
//doi.org/10.1371/journal.pone.0087403.

Lubinski, David, and Lloyd G. Humphreys. 1990. “Assessing Spurious ‘Moderator Effects’:
Illustrated Substantively with the Hypothesized (‘Synergistic’) Relation between Spatial
and Mathematical Ability.” Psychological Bulletin 107(3):385–93. https://doi.org/10.
1037/0033-2909.107.3.385.

MacCallum, Robert C., and Corinne M. Mar. 1995. “Distinguishing between Moderator and
Quadratic Effects in Multiple Regression.” Psychological Bulletin 118(3):405–21. https:
//doi.org/10.1037/0033-2909.118.3.405.

Martin, Alicia R., Masahiro Kanai, Yoichiro Kamatani, Yukinori Okada, Benjamin M. Neale,
and Mark J. Daly. 2019. “Clinical Use of Current Polygenic Risk Scores May Exac-
erbate Health Disparities.” Nature Genetics 51(4):584–91. https://doi.org/10.1038/
s41588-019-0379-x.

Martin, Joanna, Kate Tilling, Leon Hubbard, Evie Stergiakouli, Anita Thapar, George Davey
Smith, Michael C. O’Donovan, and Stanley Zammit. 2016. “Association of Genetic
Risk for Schizophrenia with Nonparticipation over Time in a Population-Based Cohort
Study.” American Journal of Epidemiology 183(12):1149–58. https://doi.org/10.1093/
aje/kww009.

McClelland, Gary H., and Charles M. Judd. 1993. “Statistical Difficulties of Detecting
Interactions and Moderator Effects.” Psychological Bulletin 114(2):376–90. https://doi.
org/10.1037/0033-2909.114.2.376.

Meisner, Allison, Prosenjit Kundu, and Nilanjan Chatterjee. 2019. “Case-Only Analysis
of Gene-Environment Interactions Using Polygenic Risk Scores.” American Journal of
Epidemiology 188(11):2013–20. https://doi.org/10.1093/aje/kwz175.

Mills, Melinda C., and Charles Rahal. 2019. “A Scientometric Review of Genome-
Wide Association Studies.” Communications Biology 2(1):9. https://doi.org/10.1038/
s42003-018-0261-x.

Mills, Melinda C., and Charles Rahal. 2020. “The GWAS Diversity Monitor Tracks Diversity
by Disease in Real Time.” Nature Genetics 52(3):242–43. https://doi.org/10.1038/
s41588-020-0580-y.

Mills, Melinda C., and Felix C. Tropf. 2020. “Sociology, Genetics, and the Coming of Age
of Sociogenomics.” Annual Review of Sociology 46:553–81. https://doi.org/10.1146/
annurev-soc-121919-054756.

Morris, Tim T., Neil M. Davies, Gibran Hemani, and George Davey Smith. 2020. “Population
Phenomena Inflate Genetic Associations of Complex Social Traits.” Science Advances
6(16):eaay0328. https://doi.org/10.1126/sciadv.aay0328.

Mostafavi, Hakhamanesh, Arbel Harpak, Ipsita Agarwal, Dalton Conley, Jonathan K.
Pritchard, and Molly Przeworski. 2020. “Variable Prediction Accuracy of Polygenic Scores
within an Ancestry Group.” eLife 9:e48376. https://doi.org/10.7554/eLife.48376.

sociological science | www.sociologicalscience.com 482 September 2020 | Volume 7

https://doi.org/10.1038/s41588-018-0147-3
https://doi.org/10.1371/journal.pone.0087403
https://doi.org/10.1371/journal.pone.0087403
https://doi.org/10.1037/0033-2909.107.3.385
https://doi.org/10.1037/0033-2909.107.3.385
https://doi.org/10.1037/0033-2909.118.3.405
https://doi.org/10.1037/0033-2909.118.3.405
https://doi.org/10.1038/s41588-019-0379-x
https://doi.org/10.1038/s41588-019-0379-x
https://doi.org/10.1093/aje/kww009
https://doi.org/10.1093/aje/kww009
https://doi.org/10.1037/0033-2909.114.2.376
https://doi.org/10.1037/0033-2909.114.2.376
https://doi.org/10.1093/aje/kwz175
https://doi.org/10.1038/s42003-018-0261-x
https://doi.org/10.1038/s42003-018-0261-x
https://doi.org/10.1038/s41588-020-0580-y
https://doi.org/10.1038/s41588-020-0580-y
https://doi.org/10.1146/annurev-soc-121919-054756
https://doi.org/10.1146/annurev-soc-121919-054756
https://doi.org/10.1126/sciadv.aay0328
https://doi.org/10.7554/eLife.48376


Domingue et al. Polygenic Scores and Environments

Musci, Rashelle J., Amie F. Bettencourt, Danielle Sisto, Brion Maher, Katherine Masyn, and
Nicholas S. Ialongo. 2019. “Violence Exposure in an Urban City: A GxE Interaction
with Aggressive and Impulsive Behaviors.” Journal of Child Psychology and Psychiatry
60(1):72–81. https://doi.org/10.1111/jcpp.12966.
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