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Abstract: To slow the spread of the novel coronavirus, many universities shifted to online instruction
and now face the question of whether and how to resume in-person instruction. This article uses
transcript data from a medium-sized American university to describe three enrollment networks
that connect students through classes and in the process create social conditions for the spread
of infectious disease: a university-wide network, an undergraduate-only network, and a liberal
arts college network. All three networks are “small worlds” characterized by high clustering, short
average path lengths, and multiple independent paths connecting students. Students from different
majors cluster together, but gateway courses and distributional requirements create cross-major
integration. Connectivity declines when large courses of 100 students or more are removed from
the network, as might be the case if some courses are taught online, but moderately sized courses
must also be removed before less than half of student-pairs are connected in three steps and less
than two-thirds in four steps. In all simulations, most students are connected through multiple
independent paths. Hybrid models of instruction can reduce but not eliminate the potential for
epidemic spread through the small worlds of course enrollments.
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ON March 6, 2020, the University of Washington became the first university
in the United States to shift to online instruction in response to SARS-CoV-

2, the novel coronavirus, and COVID-19, the disease it can cause. A number of
institutions soon followed suit, and by late March, most universities had either
suspended classes or shifted to online instruction. By early May, many institutions
had cancelled face-to-face summer sessions and were considering whether and how
face-to-face instruction could resume again.

The epidemiological justification for canceling face-to-face instruction is that
infected students can spread a virus to other students in the classroom, who can
then infect students in their other classes. In network terms, face-to-face instruction
creates a bipartite, or “two-mode,” network (see Breiger 1974; Borgatti and Everett
1997) in which students are connected through their classes and classes are con-
nected through their students. To be sure, co-enrollment in a class with someone
who is carrying the virus does not necessarily mean exposure to the virus—sick stu-
dents may not attend classes, or they may be seated some distance away. Similarly,
exposure does not necessarily mean infection and will depend on the characteristics
of the virus. Additionally, enrollment in the same class does not capture all possible
sources of contact between students, a point to which we return in the discussion.
Even so, co-enrollment networks represent a major source of social structure in
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college students’ day-to-day lives, and the features of these networks can affect how
a virus spreads.

The fields of social epidemiology and mathematical biology offer ample evi-
dence that social networks contribute to distribution and diffusion of risky health
behaviors and disease (Dickison, Havlin, and Stanley 2012; Hill et al. 2010; Luke
and Harris 2007; Miller and Kiss 2014; Morris 2004; Valente 2010). Interpersonal
contacts in everyday settings can contribute to propagated outbreaks of disease
through direct contact—for example, when an infected person sheds the virus
through respiratory droplets or aerosols in their breath. Social distancing can mit-
igate such transmission (Caley, Philip, and McCracken 2008; Cooley et al. 2016;
Kelso, Milne, and Kelly 2009; Poletti, Ajelli, and Merler 2012; Valdez, Macri, and
Braunstein 2012). Community spread can also occur via indirect contact, as when
an infected person sheds the virus onto a surface that becomes contaminated.

In this context, the structure of the social network prior to social distancing
can provide insight into factors that increase the likelihood of both direct and
indirect exposure to a virus. These factors include the number of contacts people
have, whether people are clustered in a single component or are concentrated in
subgroups that are connected through only a few bridges or hubs, and the length of
contact chains that connect people to each other indirectly. A two-mode network
can also provide insight into indirect contact that occurs via exposure in common
forums such as stores, restaurants, clubs, organized group events, and, as we
examine here, classrooms (Binson et al. 2001; Cornwell and Schneider 2017; Feld
1981; Frost 2007; Laumann et al. 2004; Niekamp et al. 2013; Oster et al. 2013).

Prior research on the social networks of students tends to focus on questions
about how a particular network structure comes into being (e.g., racially ho-
mophilous friendship networks) or how a particular network structure causally
affects an outcome such as student grades or college enrollment decisions (see
Biancani and McFarland 2013 for a review). Some research has explored the “class
size paradox,” which shows that even though average class sizes tend to be rela-
tively small, most students get exposure to a much larger number of other students
because of the presence of a few large courses (Feld and Grofman 1977). This has
major implications for the prospect of epidemic spread of disease on campus via
direct contact alone. But, little work has been done to describe the overall structure
of networks among students. In a notable exception, Israel and colleagues (2020)
used transcript data from the University of Michigan to identify specific courses
and students that have high degree centrality, meaning they act as “connectors,”
or hubs, across the network. Our analysis complements this important effort in
a different context by focusing on how the social organization of universities and
classes into majors affects network structure and the attributes of this structure that
are most relevant to urgent social epidemiological and policy questions.

We use complete transcript data from Cornell University to describe and visual-
ize the structure of three two-mode enrollment networks during a typical semester:
the university-wide network that includes all undergraduates, graduate students,
professional masters students, and continuing education students; the network of
undergraduate students; and the network of undergraduate students and courses
in Cornell’s liberal arts college. In each case, we examine the clustering of students
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by their fields of study. We also simulate enrollment networks that remove courses
from the observed data according to their size, as might be the case in hybrid models
of instruction in which some courses are taught online and others in person. These
analyses allow us to assess how large courses contribute to the “small worlds” of
course enrollment networks and, analogously, how removing these courses might
reduce the factors that influence whether course enrollments potentiate epidemic
spread of a virus.

It is not our goal to provide an epidemiological model predicting the spread of
COVID-19, for which much more information would be needed on the attributes
of the virus, the physical distancing behavior of students and instructors within
classes, the immune response of individuals within the network, and other pa-
rameters. Instead, we have three goals. First, we describe the basic features of
co-enrollment networks on a college campus that can affect the risk of a viral spread.
Our hope is that this will provide a starting point for network epidemiologists who
do wish to estimate a predictive model under different assumptions about R0 and
other parameters. Second, we advance existing empirical knowledge of the social
structure of higher education, using one university as a case study (see also Israel
et al. 2020). Third, and perhaps most critically, we provide relevant evidence to
university leaders who must balance the benefits of face-to-face instruction against
the potential risk it entails, and to the faculty, staff, parents, and students who are
trying to understand these decisions.

Data

Our transcript data are from Cornell University, a residential university in Ithaca,
New York, that enrolls approximately 15,000 undergraduate students, 6,200 grad-
uate students, and 2,700 professional students. Each college at Cornell admits its
own students and sets its own graduation requirements. Although there is no
university-wide curriculum, most colleges allow students to take courses outside
their college of enrollment, and some colleges outsource their introductory or re-
quired gateway courses to larger colleges. Integration also occurs at the course level
through “cross-listing,” wherein a course taught in its originating department (the
“parent” course) also has course numbers in other departments or colleges (“child”
courses).

The data cover all undergraduate, graduate, and professional masters students
who enrolled in courses in the fall of 2019, excluding those who spent the semester
in a study abroad program. We exclude courses that are not taught on the main
Ithaca campus and, analogously, students who took all of their courses away from
Ithaca. We also exclude 12 courses that are based in Ithaca but taught through
asynchronous distance learning as well as all courses taught through Cornell’s
executive education and joint MBA programs.1 Conversely, we include all low-
credit courses (e.g., physical education, some art or music courses for nonmajors).
We combine cross-listed courses with their parent courses, given parent and child
courses meet at the same time and place and with the same instructor. We also
combine co-meeting courses, which are most often seminars offered to both upper
division undergraduates and early career graduate students.
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We treat all sections, meaning independently taught iterations of the same
course, as separate courses. Sections are most often found in two types of courses:
large gateway courses, where for pedagogical reasons departments would rather
split up larger courses; and independent study or research courses, in which stu-
dents sign up for a section corresponding to the faculty member supervising their
study. The latter creates a large number of one- and two-student classes and con-
tributes to a right-skewed distribution of classes by size (see Table 1) but accurately
reflects the student experience on this campus. We do not, however, treat mandatory
weekly discussion sections that are attached to larger lectures as separate courses.

Table 1 provides descriptive statistics at the student and course level for the
three analytic samples. The university-wide data set includes 22,051 students and
6,072 courses. The undergraduate-only data include 14,811 students and 4,209
courses, including co-meeting courses with graduate students. The liberal arts
college data include 4,434 undergraduate students and 1,652 courses taught in the
College of Arts and Sciences (CAS) and the cross-college undergraduate program
in biology. Students in the liberal arts college can also take courses offered by
other colleges, although with some restrictions imposed by minimum in-college
credit hours embedded in the graduation requirements. Because non-CAS courses
are excluded from the liberal arts analytic sample, the average number of courses
per student in Table 1 (column 3) is lower for the CAS students than it is for all
undergraduates (column 2).

We differentiate students by their field of study. To keep the network graphs
visually manageable, we collapse majors and graduate fields into six categories:
humanities, fine arts, performing arts, and design; social sciences; science, technol-
ogy, engineering, and math (STEM); multidisciplinary and mixed; undeclared; and
law and business. The humanities, social sciences, and STEM categories include
undergraduates with two declared majors in the same field: for example, a student
double-majoring in biology and chemistry is coded as STEM. The “multidisciplinary
and mixed” category includes students in “design-your-own” majors and students
in majors or graduate fields that explicitly require courses in at least two of the broad
fields of STEM, social sciences, and humanities. It also includes dual-major students
whose majors do not fall in the same field: for example, biology and English. Most
students in the “undeclared” category are first- and second-year undergraduates
in the liberal arts college and one other smaller college, although some are in a
continuing education program. Students in Cornell’s other undergraduate colleges
are typically admitted directly into a major or, in the case of engineering, can be
safely coded as STEM even if they haven’t declared a specialty.

We use the transcript data to construct for each of the three analytic samples an
affiliation matrix, A, which is a binary, two-mode matrix (see Borgatti and Everett
1997; Wasserman and Faust 1994). A contains information about a set {n1, n2,...,ng}
of g students who are arrayed down the rows of the matrix and their ties to a set
{m1, m2,...,mh} of h courses/sections, which are arrayed across the columns of the
matrix. A contains g × h total cells. The cells in A contain a set {e1, e2,...,el} of
l lines between these two classes of nodes. A given cell in A—for example, <n1,
m1>—indicates whether student n1 was enrolled in course m1 (0 = “no,” 1 = “yes”).
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Table 1: Characteristics of students and courses in the university, undergraduate, and liberal arts college
networks

University Undergraduate Liberal Arts College

Students
Number of students (n) 22,051 14,811 4,434
Majors (%)

Humanities, Arts, and Design 7.4 7.5 14
Social Sciences 12.5 15.1 28.2
STEM 50.6 50.4 47.7
Multidisciplinary or Mixed 6.0 7.8 4.6
Undeclared 2.2 1.7 5.2
Business and Law 21.3 17.6 0.3

Mean courses per student 5.4 5.6 3.7
(1.8) (1.2) (1.4)

Median courses per student 5 6 4
Mean co-enrolled students 612.1 697.3 161.6

(425.2) (426.9) (124.2)
Median co-enrolled students 542 639
Courses

Number of courses (m) 6,072 4,209 1,652
Mean size 19.5 19.7 9.8

(42.9) (45.4) (18.4)
Median size 8 9 5
90th percentile 45 42 16
Number with 100–199 students 110 74 14
Number with 200+ students 64 58 1

Notes: Data are from student transcripts from Cornell University, Fall 2019. Course enrollments in undergraduate and
liberal arts columns only include undergraduates in the university or the liberal arts college, respectively. Liberal arts
college students may also take courses outside the college; these courses are not counted in their average or median
number of courses. Standard deviations are presented in parentheses.

Many structural features of network A have implications for direct or indirect
epidemic spread of disease. One is the network’s overall level of cohesion, which
can be measured in several ways. We calculate two-mode network density, which
is the number of observed ties divided by the total possible ties, and the number
of ties in the largest component of A, meaning students/courses that are at least
indirectly connected to each other through at least one path.

This represents a minimal threshold for connectedness and is a fairly weak
indication of potential for virus transmission. We therefore also examine the ex-
tent to which the course network connects students through multiple potential
transmission paths. We calculate the proportion of students who are members of a
two-mode bi-component—that is, students who are connected through two or more
independent paths (Cornwell and Burchard 2019). Students who are connected in
this way remain connected even when any randomly selected (e.g., large) course
moves online or when any randomly selected (e.g., well-connected) student is
absent from the network. This helps to quantify the number of short but indirect
pathways through which a virus might propagate between students.

We are also interested in the possibility that the positions of some actors in
the network, because of how it is wired, might play a disproportionately large
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role in transmitting between other pairs of actors. To assess this, we calculate the
betweenness centralization of the overall bipartite network. Betweenness centrality
refers to the extent to which a given node sits on the shortest (geodesic) paths that
link all of the other pairs of actors in the network (Freeman 1977, 1979). A node
with high betweenness centrality serves as a common gateway between nodes.
Betweenness centralization quantifies the extent to which particular nodes are more
central than other nodes in the network. In the two-mode context (see Borgatti
and Everett 1997), it provides a sense of how both courses and students constitute
particularly influential vectors of transmission between each other, irrespective of
to which vertex set a given node belongs.

We create a one-mode projection of A (derived by multiplying A by its transpose,
AT), AP, which yields a valued matrix that reflects the number of courses in which
each student is co-enrolled with each other student (Breiger 1974). We dichotomize
AP and then use the resulting binary network to analyze the structure of (potential)
student-to-student contact via shared courses. We derive several measures from the
projected network. The clustering coefficient, which measures transitivity (Holland
and Leinhardt 1971; see also Watts and Strogatz 1998 for a closely related measure),
indicates the extent to which students who are enrolled in courses with a common
third party also tend to take courses with each other. Such clustering provides
opportunities for reinforced contact transmission.

We also examine the average geodesic distance between each pair of students
via their courses. A distance of 2, for example, means that while a given pair of
students is not enrolled in any courses together, the two students are enrolled in
different courses with some third student in common. Finally, we calculate k-step
reach between student-pairs, which indicates how many steps exist between them
in the projected student-to-student network (e.g., distance of k = 1 means that the
students are in a class together).

The Small Worlds of Course Enrollment Networks

University Network

The two-mode network for the university, including all graduate and undergrad-
uate students, is depicted in Figure 1. This network includes 28,123 nodes (6,072
courses and 22,051 students) and 118,314 edges (i.e., course enrollments). Light gray
circles represent courses, colored circles represent students, and course enrollments
are indicated with light gray lines that link students to their courses. Nodes are
arranged in the two-dimensional space using the Fruchterman-Reingold algorithm
in Pajek64 5.08 (see Batagelj and Mrvar 2018) such that students are positioned close
to the courses in which they are enrolled and, by extension, other students who are
enrolled in the same courses.

The university enrollment network is highly structured by discipline and stu-
dent level. Students in the social sciences (dark blue circles), and STEM (orange
circles) occupy identifiable regions in the network, although the regions shade into
each other.2 The law and business students (light blue circles) are split into two
clusters: the cluster in the lower left part of Figure 1 is primarily undergraduates,
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Figure 1: University network. Notes: This network layout was arranged using the Fruchterman-Reingold
algorithm in Pajek64 5.08 (Batagelj and Mrvar 2018), and nodes were colored, sized, and shaped using
Netdraw (Borgatti 2002). Light gray squares represent courses, and larger gray squares with red borders
indicate courses with 100 students or more enrolled. Students are represented by small circles with colors
identifying their major(s): yellow = humanities, arts, and design; dark blue = social sciences; orange = STEM;
red = multidisciplinary/mixed; green = undeclared; light blue = business and law. Students’ enrollment
in particular courses is indicated with light gray lines. This diagram excludes 338 nodes that were not
connected to this main component.

and the cluster running in diagonal from upper left to lower right is primarily grad-
uate and professional masters students. More generally, undergraduate students
are clustered in the lower left part of the network diagram, where students and
courses are closer together. Multidisciplinary and mixed-major students (red) are
scattered throughout Figure 1 but tend to occupy the space near the social sciences
and STEM. Humanities, arts, and design students (yellow) are also interspersed
around the diagram but are more often found in the upper left region of the dia-
gram (suggesting a law and humanities cluster) and toward the periphery, where
classes are smaller. Students who have not declared a major (green) tend to be
found near other undergraduates in areas where the STEM, social sciences, and
multidisciplinary fields are integrated.

The university course enrollment network has low overall density but consid-
erable clustering (see Table 2, column 1). The density of the student-to-student
projection of the two-mode network is 0.024, meaning that a given student shares a
class with 2.4 percent of other Cornell students, on average. The average student
has the potential to share a classroom with about 529 different students by the time
they have completed one round of courses on their schedule (5,832,358*2 bi-directed
arcs[“edges”]/22,051 students = 529). This does not mean that the average student
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Table 2: Characteristics of university, undergraduate, and liberal arts college course enrollment networks.

Social Network Measures University Undergraduate Liberal Arts College

2-Mode (Student-to-Course) Network
Number of students (n) 22,051 14,811 4,434
Number of courses (m) 6,072 4,209 1,652
Number of edges (l) 118,314 83,024 16,232
Network density 0.000 0.001 0.001
Proportion of students in largest component 0.991 0.999 0.998
Proportion of courses in largest component 0.976 0.991 0.993
Proportion of students in largest bi-component 0.945 0.998 0.926
Proportion of courses in largest bi-component 0.730 0.778 0.736
Betweenness centralization 0.098 0.096 0.115

Projected 1-Mode (Student-to-Student) Network
Number of unique edges (l) 5,832,358 4,582,808 332,643
Network density 0.024 0.042 0.034
Clustering coefficient (transitivity/closure) 0.480 0.460 0.503
Average geodesic distance 2.466 2.060 2.281
Network diameter (largest observed distance) 10 4 5

Proportion reachable in k steps
k = 1 0.024 0.042 0.034
k = 2 0.594 0.896 0.686
k = 3 0.921 0.998 0.994
k = 4 0.966 0.998 0.997

Notes: Based on transcript data from Cornell University in Fall 2019.

will share a classroom with 529 other classmates, given attendance is rarely 100
percent. On the other hand, most classes meet more than one time per week, giving
each student multiple opportunities to be in the same room as co-enrolled students.

The weighted clustering coefficient for the projected one-mode student-to-
student network is 0.480. This means that when student A has at least one class with
student B, and student B has at least one class with student C, it is also frequently
the case that student A has a class with student C. In a randomly wired Erdős-Rényi
network of the same size and density as this network, one would expect to see
a clustering coefficient of 0.024 (equal to the overall density of the network); the
clustering in the observed network is more than an order of magnitude greater.
This is not surprising, given that students commonly move through their major
and distribution requirements with sets (cohorts) of fellow students. Despite high
clustering, the entire network constitutes close to a single component, with only 1.2
percent of nodes (courses and students) outside the main component.

Most students in the full enrollment network can reach each other through very
few steps. The average student-to-student geodesic distance in the projected one-
mode network from the main component of the two-mode network is 2.5. (Geodesic
distances are the shortest paths between a given pair of students.) This means that
students are, on average, 1.5 courses removed from each other. Although it is
unlikely that any two randomly chosen students would be enrolled in the same
course, it is likely that they would be enrolled in different courses that both include
the same third party. By definition, the percentage of pairs of students who are
connected in one step is the same as the measure of network density: 2.4 percent.
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Going one step beyond, to k = 2, the majority (59.4 percent) of pairs of students can
reach each other via their connections to one shared classmate. This percentage
increases to 92.1 percent at three steps and to 96.6 percent at four steps.

High clustering and short average path lengths mean that the student-to-student
network created through course enrollment is a small-world network (Watts and
Strogatz 1998). Even so, some students are many steps from each other. The network
has a diameter of 10, meaning there are 10 steps between the most distant pair of
students; visually, this is also the distance between the opposite sides of Figure 1. In
some sense, it is more remarkable that a third-year law school student is indirectly
connected to a first-year student majoring in fiber science and apparel design than
that they are connected by up to 10 steps. As we show in the next section, this
relatively large network diameter is driven by the inclusion of professional and
graduate students in the university network.

Students in the university network are also typically connected to each other
via multiple pathways that are independent of each other, what Moody and White
(2003) call “embedded ties.” Fully 94.5 percent of the students are in the largest
bi-component of the two-mode network, which is the substructure that would
require the removal of at least two nodes (course or student) before it breaks apart—
that is, before any pair of nodes becomes unreachable. Put differently, nearly all
students are connected through multiple independent pathways, and there is no
single course and no single student whose removal from the substructure would
eliminate the potential for mutual indirect exposure between any pair of students.

Undergraduate and Liberal Arts College Networks

The subnetwork of undergraduates is depicted in Figure 2, which uses the same
coloring scheme as Figure 1 to identify students of different majors and courses
with 100 or more undergraduates. The undergraduate network has a “stadium”
structure, with students arrayed around a set of common large courses in the middle
cluster. These large courses are often lower-division courses used by students in
various majors to meet distribution requirements. Some large courses also appear
in field-specific areas of the graph, which tend to be gateway courses to a particular
major. More advanced and major-specific courses appear around the periphery of
the network.

The clustering of students by field of study is, if anything, more apparent in
the undergraduate network than in the university network. In Figure 2, there
are distinct regions with high concentrations of students in STEM (orange), social
sciences (dark blue), and law and business (light blue; at the undergraduate level,
these are all business-related majors). The multidisciplinary or mixed majors (red)
are concentrated in the space between the sciences and social sciences, whereas the
humanities, arts, and design (yellow) and undeclared (green) majors are dispersed
throughout the network.

The undergraduate network exhibits the same “small world” attributes as the
university network but in exaggerated form (see Table 2, column 2). In the two-
mode undergraduate network, nearly all (99.9 percent) of the students are in the
main component. The student-to-student network projected from this two-mode
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Figure 2: Undergraduate network 

 
 
  Figure 2: Undergraduate network. Notes: This network layout was arranged using the Fruchterman-Reingold
algorithm in Pajek64 5.08 (Batagelj and Mrvar 2018), and nodes were colored, sized, and shaped using
Netdraw (Borgatti 2002). We moved some extended course pendants closer to the main structure manually
and resized the diagram to amplify student positions but did not move any student nodes. Light gray
squares represent courses, and larger gray squares with red borders indicate courses with 100 students or
more enrolled. Students are represented by small circles with colors identifying their major(s): yellow =
humanities, arts, and design; dark blue = social sciences; orange = STEM; red = multidisciplinary/mixed;
green = undeclared; light blue = business and law. Students’ enrollment in particular courses is indicated
with light gray lines. This diagram excludes 53 nodes that were not connected to this main component.

network shows slightly higher density (0.042) but similar clustering (0.460) as
the projected student-to-student network that includes graduate and professional
students. In one cycle of their schedule, the average undergraduate student will
be co-enrolled with about 619 (4,582,808*2 bi-directed arcs/14,811 students = 619)
other undergraduates. The number of students the average undergraduate actually
encounters will, as in the university network, depend both on attendance patterns
and on the number of times per week a given course meets.

In the undergraduate network, the average geodesic path length connecting
pairs of students is 2.1, which is slightly shorter than the average path length in the
university network (2.5). On average, any randomly chosen pair of undergraduates
will be connected to each other by just one step (i.e., a third student). The longest
path (network diameter) in the undergraduate network is substantially shorter than
that in the university network: four steps instead of 10. Only a small percentage (4.2
percent) of pairs of undergraduate students take the same class, but 89.6 percent of
student-pairs take a class with a third student who connects them indirectly, and
99.8 percent of student-pairs are connected after three steps.
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Figure 3 depicts the subset of undergraduate students enrolled in courses offered
by CAS, the liberal arts college. This network has significantly fewer large courses,
depicted as squares with red borders, than the other networks. This is due both to
the nature of the disciplines and pedagogies within the college (e.g., humanities
courses are often taught as small seminars) and to the exclusion of non-CAS students
in CAS courses from the analytic sample. These large courses tend to be interposed
between the social science (dark blue) and STEM (orange) regions.

Field-specific clusters of students are evident in the liberal arts network but not
as distinctly as in the university and undergraduate networks. This is what one
might expect in a liberal arts setting in which emphasis is on cross-disciplinary
exploration. Humanities and arts students (yellow) and multidisciplinary and
mixed majors (red) are scattered throughout the liberal arts network.3 Students
who have not declared majors (green), who by definition are first- and second-year
students, tend to be toward the center of Figure 3 and adjacent to larger, more
general, and lower-level courses.

The liberal arts college network, like the other two networks, effectively consti-
tutes a single component, with 99.8 percent of students in the main component (see
Table 2, column 3). With a weighted clustering coefficient of 0.503, clustering in the
projected student-to-student network of liberal arts college students is greater than
in the other two networks. A given student in the liberal arts college will share a
course with about 150 unique CAS students through one cycle of course, assuming
perfect attendance.

In the liberal arts college, the average path length (2.3), longest path length (5),
and share of student-pairs who can reach each other through k steps are consistent
with the other two networks. Although only 3.4 percent of student-pairs are con-
nected directly by being in the same class, 68.6 percent are connected indirectly in
two steps and 99.4 percent by three steps. Furthermore, liberal arts students are
connected via many alternative pathways: the largest bi-component contains 92.6
percent of the students. In short, the liberal arts college network, like the university
and undergraduate networks, constitutes a small world in which students are not
only connected to each other with short path lengths but also through multiple
paths.

Large Courses and the Viability of Hybrid Models

In each of the three networks depicted in Figures 1 to 3, large courses serve as hubs,
tying together students from different majors and network regions. In these data,
174 courses enrolled at least 100 students, and the largest course enrolled more than
900 students. It only takes one large class on a student’s schedule to increase their
potential exposure to other students exponentially, even if actual exposure in the
sense of sharing physical proximity is affected by both room size and attendance (see
discussion). Because many large courses tend to fulfill distribution requirements
for graduation, they draw students from different disciplinary backgrounds and at
different stages of advancement through their degrees, thus enhancing their role as
hubs in the enrollment network.
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Figure 3: Liberal arts network  

 
 
 
Figure 3: Liberal arts network. Notes: This network layout was arranged using the Fruchterman-Reingold
algorithm in Pajek64 5.08 (Batagelj and Mrvar 2018) and nodes were colored, sized, and shaped using Net-
draw (Borgatti 2002). Light gray squares represent courses; larger gray squares with red borders are courses
of ≥ 100 students. Students are represented by small circles with colors identifying their major(s): yellow =
humanities, arts, and design; dark blue = social sciences; orange = STEM; red = multidisciplinary/mixed;
green = undeclared; light blue = business/law. Students’ enrollment in particular courses is indicated with
light gray lines. This diagram excludes nine nodes that were not connected to this main component.

To what extent do these large courses affect path lengths, the share of students
who can be “reached” in a given number of steps, and the share of students and
courses connected through multiple pathways? To assess this, we simulate networks
in which we remove courses, as might occur in a hybrid mode of instruction in
which some courses are taught online and others face to face (see Table 3). Each
simulation assumes that student enrollment behaviors do not change—that is, the
same students who would have enrolled in a large course offered through face-to-
face instruction would also enroll in it if offered online. The simulations differ in
the size of the courses we remove, where this refers to the counts of students in the
relevant analytic sample. For example, courses of 100 or more in the liberal arts
college refer to courses with 100 or more liberal arts students, even if students from
other colleges might also be enrolled. The university network results (see panel A
of Table 3) are cleaner in the sense that all enrollments are “counted,” so we focus
more attention on them in our discussion.

Table 3 shows that the lower the course size threshold in the simulated network,
the greater the impact on connectivity within the network. In the university network,
the percentage of students in the contact network, meaning students who are
connected to any other students, declines from 96.8 percent when only courses
with 100 students or more are removed from the network to 79.4 percent when
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courses with 30 students or more are removed. The share of students in the main
component of the network likewise declines from 94.9 percent at a 100-student
threshold to 76.3 percent at a 30-student threshold. For context, the median course
at Cornell enrolls eight students, and the 90th percentile course enrolls 45 students
(see Table 1); courses of 100 students and 30 students fall at approximately the 97th
and 84th percentiles, respectively.

Table 3 also shows the reduction in connectivity of the students in the simu-
lations using lower enrollment thresholds. The average path length connecting
students in the contact network increases from 2.5 in the observed data to 2.9 in
the 100-student threshold model and 3.75 in the 30-student threshold model. The
percentage of student-pairs who are enrolled in courses (k = 1) is low in all scenarios.
The percentage of student-pairs who do not share any classes together but who
share at least one class with a third student in common (k = 2) declines from 59.3
percent in the observed data to 18.1 percent using the 100-student threshold and to
less than 10 percent in simulations using thresholds of 50 students or fewer. These
percentages increase dramatically at three steps out under all simulated thresholds:
at the 50-student threshold, roughly half (51.0 percent) of student-pairs can reach
each other, and at the 30-student threshold, just more than one-fifth (20.7 percent)
can. By four steps out, the majority of student-pairs can reach each other in all
scenarios.

Betweenness centralization also declines as course enrollment thresholds become
more aggressive (see Table 3). However, the largest drop occurs between the
observed network (0.098) and the simulated network in which the largest courses
are removed (0.012; see Table 3). To some extent, this reflects the normalizing effect
of centrality measures when variation in node degree (in this case, course size) is
suppressed. However, the much higher centralization in the observed network
also reflects the outsized role of very large courses in creating short paths between
students who might otherwise be only distantly connected.

We also assess the robustness of connections between students under different
hybrid model scenarios, meaning the extent to which multiple independent paths
connect the same pair of students. In the observed data, the largest bi-component
in the university network contains 94.5 percent of the students in the network. This
drops to 83.8 percent when courses of 100 students or more are removed from
face-to-face instruction, and to 48.6 percent when courses of 30 students or more are
removed (see Table 3). Removing large or moderate-sized courses from face-to-face
instruction still leaves most students connected to each other through multiple
independent pathways.

We find a similar pattern of results for simulations of hybrid instructional models
fit to the undergraduate and liberal arts college networks (see Table 3, panels B and
C). In both sets of simulations, the lower the enrollment threshold at which a course
is removed from the network, the more elongated the path lengths and the lower
the percentage of students who share a class together (k = 1) or are connected by
one intervening step (k = 2). A threshold of 30 students reduces the percentage of
student-pairs connected by three steps to 37.5 percent in the undergraduate network
and to 49.9 percent in the liberal arts network. By four steps, even the 30-student
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threshold leaves 67.3 percent of pairs of undergraduates and 74.8 percent of pairs
of liberal arts undergraduates connected.

In both networks, indirect connectedness is also quite robust in the simulations.
For example, 57.1 percent of undergraduates remain connected within large bi-
components even under the threshold of 30 students. This percentage is slightly
higher when we restrict the analysis to the liberal arts college. Finally, we see
the same pattern of betweenness centralization as in the full university network:
the nodes that play the biggest role in linking together the network through short
paths are the largest courses. However, the level of betweenness centralization at a
30-student threshold (0.007) is half that of the level of betweenness centralization at
a 100-student threshold (0.014). This shows that midsized courses contribute in a
nontrivial way to the presence of short transmission paths in the network.

Discussion

Course enrollments expose students to large numbers of other students throughout
one cycle of a schedule, and they create multiple short chains of connection between
students that can potentiate the spread of a virus through college campuses. The
enrollment networks that connect students to classes, and to each other, are classic
“small worlds” characterized by short path lengths and high clustering. Although
all three of the networks we examined exhibit these “small world” attributes,
connectivity is greater in the undergraduate and liberal arts college networks than
in the network including graduate students.

Connectivity in these networks remains high when one excludes the very largest
courses from the network, and modest under lower enrollment thresholds. For
example, when courses with 100 students or more are removed from the university
network, the percentage of student-pairs that can reach each other in three steps
declines from 92.1 percent to 77.5 percent; when courses of 30 students or more
are removed, this percentage declines to 20.7 percent. However, even under the
lower enrollment threshold, the majority (50.4 percent) of students are connected in
four steps. Other analyses show that the number of alternative pathways by which
students are (indirectly) connected remains high even when large and moderately
sized courses become virtual, especially in the undergraduate-only and liberal arts
college networks.

At some level, it is inevitable that course enrollment networks will be “small
worlds.” High clustering (transitivity) and short path lengths among students in a
single-mode network projected from a two-mode network is expected wherever:
(1) the distribution of courses by size is broad and right-skewed, with the median
course enrolling fewer students than the mean course (see Table 1); (2) the distri-
bution of the number of courses each student takes is narrower and approximates
a Poisson distribution; and (3) student-pairs take a least two courses together (a
“four-cycle”) or three students create a closed triad through three shared courses (a
“six-cycle”), perhaps because they are in the same major (Vasques Filho and O’Neale
2020). One implication is that to maximally reduce the potential for the transmission
of a virus among students through face-to-face instruction, universities would need
to offer enough small courses that the mean course size is approximately equal
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to the mean number of courses a student takes.4 This would require teaching a
very large share of courses online or, alternatively, “breaking up” larger face-to-face
courses into many smaller sections.5

There are several important limitations of this study. First, and most obviously,
we cannot assess whether our results generalize to other educational institutions.
Even universities of similar size differ in the number and type of majors that are
offered, the extent to which majors and courses are concentrated in a single college
or multiple colleges, and a college’s autonomy in setting curricular requirements.
All of these may affect specific patterns of course enrollments. Still, we believe the
“small world” character of each of the three networks in the Cornell data is likely to
generalize insofar as most universities have similar distributions of course sizes (i.e.,
broad and right-skewed), similar distributions of numbers of courses per student,
and similar network substructures created by students in the same major taking the
same courses (Vasques Filho and O’Neale 2020).

Second, course enrollment networks understate the social and physical connec-
tions among courses and students, especially on residential campuses but even
on nonresidential or low-residential campuses. They do not capture connections
between courses that are created by sharing an instructor or a common classroom
space, which, depending on the virus, could affect transmission through contam-
inated surfaces. They do not capture the incidental contacts that occur between
students in hallways, on quadrangles between class periods, in libraries, or in the
commercial areas that surround most colleges or universities. And, crucially, course
enrollment networks do not capture the many ways that students, particularly on a
residential campus, are connected through friends, parties, athletics, co-curricular
and extra-curricular activities, and living situations. Given the multiplex ways that
students come in contact with each other outside the classroom, the results of this
article are a conservative depiction of the extent to which college campuses facilitate
contact among students.

At the same time, our analysis likely overstates the density of the networks
through which a virus might be transmitted through shared enrollments. Two
students who are enrolled in the same large lecture course may never come in close
physical proximity to each other. Similarly, classes, particularly large ones, rarely
achieve full attendance. Because multiple pathways connect pairs of students, low
attendance or large physical distances separating students in any single class may
not have an appreciable effect on a given student’s risk of exposure. Even so, future
work should consider factors such as square footage of seating within classrooms
and attendance rates to fine-tune estimates of the features of course enrollment
networks relevant to viral spread.

Finally, the network we have analyzed here is a static, aggregate representation
of the overall course enrollment record. It does not capture the dynamics of move-
ment between courses, and it ignores the sequence in which students attend each of
their classes. This temporal sequencing may be consequential for epidemic spread.
For example, if larger classes tend to meet earlier in the week and smaller classes
and discussion sections later in the week, an infection that arrives with a student
after a weekend away from campus may spread more quickly. Classes that meet
three times a week offer more chances of repeated exposure than those that meet
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only once a week and more opportunities for all students to be in contact with each
other despite one-time absences. Future research should undertake a more detailed
analysis of these temporal dynamics and their implications for the potential of an
epidemic spread.

Initial reactions to universities’ decisions to shift to online instruction were
mixed, with some observers lauding it as a necessary step in the fight against the
diffusion of COVID-19 and others criticizing it as an overreaction. Despite the
limitations of our study, our results suggest that the former view is closer to the
mark. The very same “small world” networks among students that in normal times
create an intellectually and socially vibrant campus experience can also increase
the risk of an epidemic spread of a highly infectious disease. Although hybrid
models of instruction, particularly those with more aggressive course enrollment
thresholds, can elongate the paths connecting students to each other indirectly and
reduce clustering, they do not “break apart” the small worlds of course enrollment
networks. These models can reduce but not eliminate the risk of epidemic spread
of a virus through the networks created by college classes.

Data Availability

The data for this article were used with permission from Cornell University. A
simplified, de-identified version of the data will be posted on SocArXiv.

Ethical Compliance

We have complied with all relevant ethical regulations. The study is exempt from
IRB review.

Notes

1 Cornell’s business school, which is located in Ithaca, collaborates with off-campus
entities (Cornell Tech; Cornell Weill; Queen’s University in Kingston, Ontario; Tsinghua
University in Beijing) to offer executive education and joint MBA programs. Most courses
in these programs are offered in the partners’ cities or through distance learning, and
are excluded by our “no non-Ithaca courses” decision rule. For consistency, we also
exclude the handful of executive education and joint MBA courses offered in Ithaca. This
removes 256 student*course records out of a total of more than 118,000 records.

2 Network diagrams in a color scheme that is accessible to readers with some forms of
color-blindness are provided in Appendix A of the online supplement.

3 There are only 14 law and business students (light blue circles) in the liberal arts college.
Law is not offered as an undergraduate major, and students interested in pre-business
programs typically enter or transfer to other colleges.

4 We are grateful to Demival Vasques Filho for pointing out this implication of Vasques
Filho and O’Neale (2020) for our project via personal communication.

5 In theory, one could also think about identifying particular students who are highly
connected to each other and removing these students from face-to-face instructional
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network. Given the inequities this would entail, this doesn’t seem feasible as a university
policy.
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