Supplement to:
Goldstein, Adam, and Orestes P. Hastings. 2019. "Buying In: Positional Competition, Schools, Income Inequality, and Housing Consumption." Sociological Science 6: 416-445.

The table below shows estimates from two-stage first-difference models of change in families' assigned school desirability when moving. This specification is equivalent to table 1 in the main text, but here we substitute an alternative school desirability metric (\% students not eligible for reduced school lunch).

	$\Delta \%$ Not Eligible for Reduced School Lunch					
	(1)	(2)	(3)	(4)	(5)	(6)
Previous school \% pay lunch	$\begin{aligned} & -17.89^{*} \\ & (4.288) \end{aligned}$	$\begin{aligned} & -14.56^{*} \\ & (4.163) \end{aligned}$	$\begin{aligned} & -16.39^{*} \\ & (4.332) \end{aligned}$	$\begin{aligned} & -28.91^{*} \\ & (8.431) \end{aligned}$	$\begin{aligned} & -26.02^{*} \\ & (8.224) \end{aligned}$	$\begin{aligned} & -38.71^{*} \\ & (5.696) \end{aligned}$
CZ inequality (gini)	$\begin{aligned} & -0.281^{*} \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.292^{*} \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.296^{*} \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.284^{*} \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.295^{*} \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.343^{*} \\ & (0.014) \end{aligned}$
$2^{\text {nd }}$ SES Quintile	$\begin{gathered} 1.908^{*} \\ (0.789) \end{gathered}$	$\begin{gathered} 1.410 \\ (0.777) \end{gathered}$	$\begin{gathered} 1.557 \\ (0.808) \end{gathered}$	$\begin{gathered} -0.519 \\ (5.082) \end{gathered}$	$\begin{gathered} -1.336 \\ (4.991) \end{gathered}$	$\begin{gathered} 0.797 \\ (3.803) \end{gathered}$
$3{ }^{\text {rd }}$ SES Quintile	$\begin{gathered} 2.649^{*} \\ (0.884) \end{gathered}$	$\begin{aligned} & 1.824^{*} \\ & (0.871) \end{aligned}$	$\begin{aligned} & 1.787^{*} \\ & (0.905) \end{aligned}$	$\begin{aligned} & -2.900 \\ & (5.025) \end{aligned}$	$\begin{gathered} -3.029 \\ (4.949) \end{gathered}$	$\begin{aligned} & -0.680 \\ & (3.937) \end{aligned}$
$4^{\text {th }}$ SES Quintile	$\begin{aligned} & 5.133^{*} \\ & (1.031) \end{aligned}$	$\begin{aligned} & 4.123^{*} \\ & (0.992) \end{aligned}$	$\begin{aligned} & 4.298^{*} \\ & (1.033) \end{aligned}$	$\begin{gathered} -4.256 \\ (5.519) \end{gathered}$	$\begin{gathered} -6.422 \\ (5.348) \end{gathered}$	$\begin{gathered} -5.599 \\ (4.586) \end{gathered}$
Top SES Quintile	$\begin{gathered} 8.261^{*} \\ (1.219) \end{gathered}$	$\begin{aligned} & 6.877^{*} \\ & (1.192) \end{aligned}$	$\begin{gathered} 7.297^{*} \\ (1.241) \end{gathered}$	$\begin{aligned} & -7.156 \\ & (6.451) \end{aligned}$	$\begin{aligned} & -9.412 \\ & (6.520) \end{aligned}$	$\begin{aligned} & -13.89^{*} \\ & (5.428) \end{aligned}$
Own-to-own Move		$\begin{aligned} & 4.597^{*} \\ & (1.221) \end{aligned}$	$\begin{aligned} & 4.655^{*} \\ & (1.317) \end{aligned}$		$\begin{aligned} & 4.664^{*} \\ & (1.214) \end{aligned}$	$\begin{aligned} & 4.663^{*} \\ & (0.928) \end{aligned}$
Rent-to-own Move		$\begin{gathered} 1.057 \\ (1.205) \end{gathered}$	$\begin{gathered} 0.560 \\ (1.360) \end{gathered}$		$\begin{gathered} 0.996 \\ (1.202) \end{gathered}$	$\begin{aligned} & 1.920^{*} \\ & (0.930) \end{aligned}$
Own-to-rent Move		$\begin{gathered} 1.051 \\ (1.133) \end{gathered}$	$\begin{gathered} 1.143 \\ (1.185) \end{gathered}$		$\begin{gathered} 1.097 \\ (1.136) \end{gathered}$	$\begin{aligned} & 2.093^{*} \\ & (0.920) \end{aligned}$
$2^{\text {nd }} \mathrm{SES} \times$ x Inequality				$\begin{gathered} 5.035 \\ (11.20) \end{gathered}$	$\begin{gathered} 5.740 \\ (10.97) \end{gathered}$	$\begin{gathered} 2.065 \\ (8.141) \end{gathered}$
$3{ }^{\text {rd }}$ SES x Inequality				$\begin{gathered} 11.92 \\ (11.11) \end{gathered}$	$\begin{gathered} 10.38 \\ (10.86) \end{gathered}$	$\begin{gathered} 5.667 \\ (8.426) \end{gathered}$
$4^{\text {th }}$ SES x Inequality				$\begin{gathered} 20.17 \\ (12.15) \end{gathered}$	$\begin{gathered} 22.62 \\ (11.70) \end{gathered}$	$\begin{aligned} & 22.24^{*} \\ & (9.957) \end{aligned}$
Top SES x Inequality				$\begin{gathered} 32.41^{*} \\ (14.00) \end{gathered}$	$\begin{gathered} 34.15^{*} \\ (14.07) \end{gathered}$	$\begin{aligned} & 49.53^{*} \\ & (11.83) \end{aligned}$
\% School Choice						$\begin{aligned} & -13.88^{*} \\ & (4.311) \end{aligned}$
$2^{\text {nd }}$ SES x School Choice						$\begin{gathered} 0.461 \\ (7.108) \end{gathered}$
$3{ }^{\text {rd }}$ SES x School Choice						$\begin{gathered} 4.522 \\ (7.644) \end{gathered}$
$4^{\text {th }}$ SES x School Choice						$\begin{gathered} 9.357 \\ (9.948) \end{gathered}$
Top SES x School Choice						$\begin{aligned} & -16.03 \\ & (13.06) \end{aligned}$
Constant	$\begin{gathered} 20.72^{*} \\ (2.480) \end{gathered}$	$\begin{gathered} 22.91^{*} \\ (2.492) \end{gathered}$	$\begin{aligned} & -1.599 \\ & (2.556) \end{aligned}$	$\begin{gathered} 25.95^{*} \\ (4.184) \end{gathered}$	$\begin{gathered} 28.37^{*} \\ (4.140) \end{gathered}$	$\begin{aligned} & 36.78^{*} \\ & (3.133) \end{aligned}$
Additional Controls	No	Yes	Yes	No	Yes	Yes
Reported Reason for Moving	No	No	Yes	No	No	No
Observations	15365	15365	15204	15365	15365	15371

Note: First stage selection equation estimates not shown
Standard errors in parentheses. ${ }^{*} p<0.05$
Notes: Model estimated on within-CZ moves among families with children from 1999-2011. All models employ survey weights. Additional demographic control variables include marital status, household size, and age of youngest child.

The three figures below replicate the model estimation results shown in figures 2-4 of the main text, but here the analytical sample is confined solely to the subset of cases for which we have school-level (rather than district-level) geographic locators.

School-located Subsample

A: Models with school level math score decile rank

B: Models with school level \% no reduced price lunch

School-located Subsample

Effect of 1 percentile increase in math score rank

Effect of 1% decrease in students eligible for reduced lunch

