

Supplement to:

Isakov, Alexander, James H. Fowler, Edoardo M. Airoldi, and Nicholas A. Christakis. 2019. "The Structure of Negative Social Ties in Rural Village Networks." Sociological Science 6: 197-218.

Online Supplement

The Structure of Negative Social Ties in Rural Village Networks

Alexander Isakov,^{1,2} James H. Fowler,^{3,4} Edoardo M. Airoldi,^{5,6} Nicholas A. Christakis^{1,2,7,8*}

¹ Yale Institute for Network Science, Yale University, New Haven, CT 06520, USA.

² Department of Sociology, Yale University, New Haven, CT 06520, USA.

³ Department of Medicine, University of California, San Diego, CA 92103, USA.

⁴ Political Science Department, University of California, San Diego, CA 92103, USA.

⁵ Department of Statistical Science, Fox School of Business, Temple University, Philadelphia, PA 19122, USA.

⁶ Department of Statistics and Institute for Quantitative Social Sciences, Harvard University, Cambridge, MA 02138, USA.

⁷ Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.

⁸ Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA.

*To whom correspondence should be addressed. Author e-mail: nicholas.christakis@yale.edu

Supplementary Materials and Methods

Characterizing Unique Triads in Directed Graphs with Friend and Antagonist Ties

We developed the "Heterogenous Triad Census" as a complete triad census on directed graphs with heterogenous edges (i.e., a unique categorization of triads). Each directed edge can have one of two colors (corresponding to "friend" and "antagonist"). Define a network *G* to be in the same isomorphism class as a network *G'* if it is the same up to node relabeling. *A priori*, there are $3^6 = 729$ potentially distinct networks with 3 nodes, no self-loops (that is, with 0 on the diagonal of the corresponding adjacency matrix), and 3 possible entries in the each of the other 6 slots (0 = no edge, -1 = antagonist edge, 1 = friend edge). An exhaustive search gives an explicit splitting into isomorphism classes. Thus, we discern 138 unique triad classes.

For simplicity of reference, we propose labeling the triad classes with the following scheme. Every class has a name $B_i F_i E_k U_i S_m$, where "B" stands for "Blank," "F" stands for

"Friend," "E" stands for "Antagonist" ("Enemy"), "U" stands for "Unsymmetrizable," and "S" stands for "Symmetry," and *i*, *j*, *k*, *l*, *m* are integers defined as follows. Let *A* be the adjacency matrix corresponding to the triple and call the nodes α , β , γ . Then,

- *i* is the number of pairs of three vertices that have no ties in either direction ($A_{xy} = A_{yx} = 0$ where $x, y \in {\alpha, \beta, \gamma}$ and $x \neq y$ since we do not allow self-loops);
- *j* is the number of pairs of friend ties that either are already symmetric or can be symmetrized into a friend pair (either $A_{xy} = A_{yx} = 1$, or $A_{xy} = 1$ and $A_{yx} = 0$);
- k is the number of pairs of antagonist ties that either are already symmetric or can be symmetrized into an antagonist pair (either $A_{xy} = A_{yx} = -1$, or $A_{xy} = -1$ and $A_{yx} = 0$)
- *l* is the number of pairs of friend/antagonist ties that cannot be symmetrized ($A_{xy} = 1$ and $A_{yx} = -1$);
- *m* is an index for symmetry breaking (starting from 0) for classes that would be the same when friend or antagonist ties are symmetrized.

For example, the "empty triad" has a Class Name of $B_3F_0E_0U_0S_0$, since all three pairs of vertices have no connections between them in either direction. The full census, with figures, class names, and total observed counts of each class across all villages, is provided in Supplementary Table S23. A summary of sociologically relevant triads is provided in Table S13. These results are applicable to any directed network with multiple tie types, including those found in neurobiology (where connections can be excitatory or inhibitory) and social science (including multiplex networks).

Network Parameters

Reciprocity is measured as the probability that the edge from ego to alter exists if the edge from alter to ego exists. That is, we count the number of times a directed edge is reciprocated and divide by the number of edges. We report these measures separately for friend connections and antagonist connections across the whole population. In other words, if $A^{V,S}$ is the adjacency matrix for ties of type S (S \in {Friend, Antagonist}) ties for village V, then:

$$Reciprocity_{S} = \frac{\sum_{V} \left(\sum_{i,j} A_{ij}^{V,S} (A_{ij}^{V,S})^{T} \right)}{\sum_{V} (\sum_{i,j} A_{ij}^{V,S})}, S \in \{Friend, Antagonist\}$$

Transitivity (the likelihood that two of a person's friends (antagonists) are themselves friends (antagonists)) is calculated as a global network parameter, i.e., the ratio of connected triples to the total number of possible connected triples in an undirected network (e.g., in a village). We report this standard measure separately for the friendship and antagonism networks:

$$Transitivity_{S} = \frac{\sum_{V} Tr((A^{V,S})^{3})}{\sum_{V}((\sum_{i,j}(A^{V,S}_{ij})^{2}) - Tr((A^{V,S})^{2}))}, S \in \{Friend, Antagonist\}$$

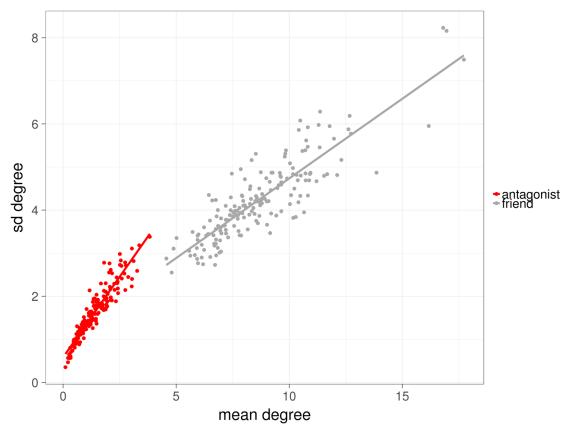
Community Detection for Negative Tie Structure

To evaluate the structural location of negative ties in higher-order network features (network communities), we first create subsets of the village networks that included only positive ties. We partition this subnetwork into communities, reinsert negative ties, and compute the ratio of negative ties between communities compared to within communities. To assess the sensitivity of the results to the community detection method used, we employed three distinct methods and found similar results: a fast-greedy community-detection algorithm (where the ratio is 3.0, 99.5%)

CI: 5.1, 5.9), the Louvain method (4.3, 99.5% CI: 7.3, 8.7), and the Girvan-Newman method of edge betweenness (4.5, 99.5% CI: 12.2, 15.9). In all cases, there are relatively fewer negative ties between communities than due to random chance alone.

Basic Logistic Regression Models

Table S1 shows summary statistics. Tables S2-S11 show bivariate logistic regressions (GLMs) across all possible dyads in the network. Table S12 shows a multivariate model with all covariates, where the dependent variable is 1 if person *i* names person *j* as a social tie (we analyze friends and antagonists separately), and 0 otherwise. For all models, we used village fixed effects to remove the impact of village-specific characteristics. All p-values are given to three significant digits (those given as 0.000 are $\ll 0.001$). The independent variables in the basic model include both "personal" and "social" variables. Personal variables are individual characteristics: sex, age, whether or not they are indigenous, whether or not they identify with a religion, their dichotomized wealth level ("wealthy" if they responded 4 or higher on a summary measure of wealth and "not wealthy" otherwise), and their dichotomized health levels ("healthy" if they responded 4 or higher on a summary measure of health and "not healthy" otherwise). Social variables include reciprocity, number of friends, number of antagonists, and amount of overlap (number of co-nominated friends/antagonists). The coefficients indicate the log-odds of the existence of the corresponding type of tie.


Comparing Second Moments of Friendship and Antagonism

We used a stringent test to determine whether the second moment of friend and antagonist ties is significantly different. First, we standardized the distribution of means by removing friend ties at random such that the total number of friend and antagonist ties within each village was equal. Then, we calculated the standard deviation of the degree distribution for friend and antagonist ties separately. We used a paired t-test at the 99.5% confidence level to conclude that the second moment of friend ties is not equal to that of antagonist ties (P << 0.005). See Figure S1 and Table S14 for results from a simple linear regression.

Basic Village-Level Regression Models

To study the prevalence of animosity (number of antagonist ties divided by number of friend and antagonist ties), we used bivariate OLS regressions across all villages in the sample. The results are shown in Tables S15-S22. All p-values are given to three significant digits (those given as 0.000 are \ll 0.001). The independent variables in the basic model are village size, population density (measured as the average distance between households), village elevation (and elevation squared), a wealth index, whether or not there is electricity (level of infrastructure), and the prevalence of animosity in the closest neighboring village ("as the crow flies", found using the Haversine formula from the village center). The coefficients indicate how much a unit change in the independent variable is associated with an increase in the prevalence of animosity in a village.

Supplementary Figures Supplementary Figure S1

Figure S1. Mean vs. standard deviation for friend and antagonistic ties. Conditional on the mean, the standard deviation for enemies is approximately twice as large as for friends, suggesting that antagonistic relationships are created in a less structured social context than friendship relationships.

Supplementary Tables

Supplementary Table S1: Summary Statistics.							
Variable	Mean	SD	Min	Max			
Male	0.424	0.494	0	1			
Age	32.843	17.168	11	93			
Religiosity	0.836	0.370	0	1			
Indigenous Status	0.117	0.321	0	1			
Income Level (High)	0.388	0.487	0	1			
General Health Status (Healthy)	0.201	0.401	0	1			
In-Degree (Friends)	4.259	3.448	0	34			
Out-Degree (Friends)	4.259	2.561	0	29			
In-Degree (Antagonists)	0.666	1.272	0	25			
Out-Degree (Antagonists)	0.666	1.166	0	16			

Supplementary Table S2: Logistic Regression of Social Ties on Reciprocity								
	<u>Depe</u>	<u>Dependent Variable:</u>				ndent Variab	ole:	
	Ego Is Antagonists with Alter				Ego Is Friends with Alter			
	Coef.	S.E.		Р	Coef.	S.E.		Р
Reciprocal Tie Exists	2.181	0.037	0.000		3.238	0.008	0.000	
Village Fixed Effects		YES				YES		
Ν		4698552				4698552		

Logistic regression presence of social tie from ego to alter on the existence of tie reciprocity. Model includes village fixed effects (not shown).

	<u>Depe</u>	ndent Variabl	<u>e:</u>	Dependent Variable:			
	<u>Ego Is An</u>	tagonists with	<u>a Alter</u>	<u>Ego Is</u>	<u>Ego Is Friends with Alter</u>		
	Coef.	<i>S.E</i> .	Р	Coef.	<i>S.E</i> .	Р	
Ego Male	-0.325	0.021	0.000	0.107	0.007	0.000	
Alter Male	0.176	0.021	0.000	0.135	0.007	0.000	
Ego and Alter are Same Sex	1.484	0.021	0.000	0.942	0.007	0.000	
Village Fixed Effects		YES			YES		
Ν		4698552			4698552		

Supplementary	Table S3:	: Logistic	Regression	of Social	Ties on Sex

Logistic regression of presence of social tie from ego to alter on ego and alter sex. Model includes village fixed effects (not shown).

Supplementary 7	Table S4: Lo	ogistic Regres	sion of Soci	al Ties on Age		
	<u>De</u> j	oendent Varial	ole:	<u>Depe</u>	endent Variabl	<u>e:</u>
	<u>Ego Is A</u>	Antagonists wi	th Alter	Ego Is	Friends with A	<u>Alter</u>
	Coef.	<i>S.E</i> .	Р	Coef.	S.E.	Р
Ego Age	-0.007	0.0006	0.000	0.006	0.0002	0.000
Alter Age	0.030	0.0006	0.000	0.020	0.002	0.000
Ego-Alter Age Similarity	0.038	0.0007	0.000	0.031	0.003	0.000
Village Fixed Effects		YES			YES	
Ν		4698552			4698552	

Logistic regression of presence of social tie from ego to alter on ego and alter age. Model includes village fixed effects (not shown).

Supplementary Table S5: Logistic Regression of Social Ties on Religion							
	<u>Depe</u>	ndent Variabl	<u>e:</u>	<u>Dep</u>	pendent Varial	ble:	
	<u>Ego Is An</u>	ntagonists with	<u>n Alter</u>	<u>Ego I</u>	s Friends with	<u>Alter</u>	
	Coef.	<i>S.E</i> .		P Coef.	S.E.	Р	
Ego Religious	0.080	0.028	0.005	-0.150	0.011	0.000	
Alter Religious	-0.102	0.028	0.000	-0.032	0.011	0.002	
Ego-Alter Same Religious Status	0.130	0.028	0.000	0.399	0.011	0.000	
Village Fixed Effects		YES			YES		
N		4698552			4698552		

Logistic regression of presence of social tie from ego to alter on ego and alter identifying with a religion. Model includes village fixed effects (not shown).

Supplementary Table S6: Logistic Regression of Social Ties on Health							
	<u>Depe</u>	ndent Variabl	<u>e:</u>	<u>Depe</u>	<u>Dependent Variable:</u>		
	<u>Ego Is An</u>	tagonists with	<u>h Alter</u>	Ego Is	Ego Is Friends with Alter		
	Coef.	<i>S.E</i> .	Р	Coef.	S.E.	Р	
Ego Healthy	-0.113	0.027	0.000	0.084	0.010	0.000	
Alter Healthy	-0.079	0.027	0.003	0.021	0.010	0.033	
Ego-Alter Same Health Status	0.131	0.027	0.000	0.151	0.010	0.000	
Village Fixed Effects		YES			YES		
Ν		4697884			4697884		

Supplementary	Table S6: Logistic	Regression of Social Ties on Health

Logistic regression of presence of social tie from ego to alter on ego and alter health status. Model includes village fixed effects (not shown).

Supplementary Table S7: Logistic Regression of Social Ties on Wealth							
	<u>Depe</u>	ndent Variabl	<u>e:</u>	<u>Dependent Variable:</u>			
	<u>Ego Is An</u>	Ego Is Antagonists with Alter			Ego Is Friends with Alter		
	Coef.	<i>S.E</i> .	Р	Coef.	<i>S.E</i> .	Р	
Ego Wealthy	-0.101	0.018	0.000	0.027	0.008	0.000	
Alter Wealthy	0.119	0.018	0.000	0.279	0.008	0.000	
Ego-Alter Same Wealth Status	0.036	0.017	0.041	0.628	0.007	0.000	
Village Fixed Effects		YES			YES		
Ν		4609496			4609496		

Supplementary	Table S7	: Logistic	Regression	of Social	Ties on Wealth
suppression of the second		- mogroere		01 000100	

Logistic regression of presence of social tie from ego to alter on ego and alter wealth status. Model includes village fixed effects (not shown).

Supplementary	Supplementary Table S8: Logistic Regression of Social Ties on Indigenous Status							
	Depe	ndent Variabl	<u>e:</u>	<u>Depe</u>	ndent Variabl	<u>e:</u>		
	<u>Ego Is An</u>	tagonists with	<u>Alter</u>	Ego Is .	Friends with A	lter		
	Coef.	S.E.	Р	Coef.	<i>S.E</i> .	Р		
Ego is Indigenous	0.266	0.036	0.000	0.166	0.014	0.000		
Alter is Indigenous	0.198	0.036	0.000	0.244	0.014	0.000		
Ego-Alter Same Indigenous Status	0.080	0.032	0.013	0.315	0.012	0.000		
Village Fixed Effects		YES			YES			
Ν		4694224			4694224			

Logistic regression of presence of social tie from ego to alter on whether ego and alter are indigenous. Model includes village fixed effects (not shown).

Supplementary Table S9: Logistic Regression of Social Ties on Friend on Out-Degree							
	Depe	ndent Variabl	<u>e:</u>	<u>Depe</u>	endent Variab	le:	
	<u>Ego Is An</u>	tagonists with	<u>a Alter</u>	Ego Is	Friends with	<u>Alter</u>	
	Coef.	S.E.	Р	Coef.	S.E.	Р	
Ego Friend Out-Degree	0.103	0.003	0.000	0.225	0.001	0.000	
Alter Friend Out-Degree	0.008	0.003	0.012	0.050	0.001	0.000	
Ego-Alter Friend Out- Degree Similarity	0.013	0.004	0.001	0.082	0.002	0.000	
Village Fixed Effects		YES			YES		
Ν		4698552			4698552		

Logistic regression of presence of social tie from ego to alter on ego and alter friend in-degree. Model includes village fixed effects (not shown).

Supplementary Table S10: Logistic Regression of Social Ties on Antagonist Out-Degree							
	<u>Dependent Variable:</u>				Dependent Variable:		
	<u>Ego Is A</u>	ntagonists wit	h Alter		Ego Is Friends with Alter		
	Coef.	<i>S.E</i> .		Р	Coef.	<i>S.E</i> .	Р
Ego Antagonist Out-Degree	0.756	0.008	0.000	(0.117	0.003	0.000
Alter Antagonist Out- Degree	0.008	0.007	0.311	(0.020	0.003	0.000
Ego-Alter Antagonist Out- Degree Similarity	0.243	0.008	0.000	(0.078	0.004	0.000
Village Fixed Effects		YES				YES	
Ν		4698552				4698552	

Logistic regression of presence of social tie from ego to alter on ego and alter antagonist indegree. Model includes village fixed effects (not shown).

	Depe	ndent Variab	ole:		Depende	nt Varial	ole:	
	Ego Is Antagonists with Alter			<u>E</u>	Ego Is Friends with Alter			
	Coef.	<i>S.E</i> .		P C	Coef.	S.E.		Р
Number of Friends Co- nominated	0.198	0.011	0.000	1.180	0	.004	0.000	
Number of Antagonists Co-nominated	0.527	0.035	0.000	0.633	0	.018	0.000	
Village Fixed Effects		YES			Ŋ	/ES		
Ν		4698552			469	98552		

Supplementary Table S11: Logistic Regression of Social Ties on Friend and Antagonist Conominations

Logistic regression of presence of social tie from ego to alter on the number of friends and antagonists co-nominated by ego and alter. Model includes village fixed effects (not shown).

	Dep	endent Variab	le:	Dependent Variable:			
	Ego Is A	ntagonists wit	th Alter	Ego Is I	Friends with A	lter	
	Coef.	<i>S.E</i> .	Р	Coef.	<i>S.E</i> .	Р	
Reciprocal Tie Exists	1.920	0.042	0.000	2.821	0.010	0.000	
Ego Male	-0.291	0.022	0.000	0.078	0.008	0.000	
Alter Male	0.243	0.022	0.000	0.049	0.008	0.000	
Ego and Alter are Same Sex	1.489	0.022	0.000	0.764	0.008	0.000	
Ego Age	-0.008	0.001	0.000	0.003	0.000	0.000	
Alter Age	0.017	0.001	0.000	0.008	0.000	0.000	
Ego-Alter Age Similarity	0.035	0.001	0.000	0.023	0.000	0.000	
Ego Religious	0.086	0.030	0.004	-0.074	0.012	0.000	
Alter Religious	-0.126	0.030	0.000	-0.153	0.012	0.000	
Ego-Alter Same Religious Status	0.028	0.029	0.327	0.222	0.012	0.000	
Ego Healthy	-0.154	0.028	0.000	0.062	0.011	0.000	
Alter Healthy	0.101	0.028	0.000	0.058	0.011	0.000	
Ego-Alter Same Health Status	0.075	0.027	0.006	0.061	0.011	0.000	
Ego Wealthy	-0.055	0.019	0.003	-0.023	0.008	0.007	
Alter Wealthy	0.049	0.019	0.010	0.170	0.008	0.000	
Ego-Alter Same Wealth Status	0.020	0.018	0.257	0.485	0.008	0.000	
Ego is Indigenous	0.299	0.036	0.000	0.068	0.015	0.000	
Alter is Indigenous	0.077	0.037	0.039	0.078	0.016	0.000	
Ego-Alter Same Indigenous Status	0.021	0.033	0.532	0.158	0.014	0.000	

Supplementary Table S12: Logistic Regression of Social Ties on All Personal and Soci	al
Covariates	

Ego Friend In- Degree	-0.014	0.003	0.000	-0.072	0.001	0.000
Alter Friend In- Degree	0.030	0.003	0.000	0.223	0.001	0.000
Ego-Alter Friend In- Degree Similarity	0.004	0.003	0.227	0.090	0.001	0.000
Ego Antagonist In-Degree	-0.004	0.007	0.575	0.007	0.004	0.045
Alter Antagonist In- Degree	0.554	0.007	0.000	0.047	0.004	0.000
Ego-Alter Antagonist In- Degree Similarity	0.240	0.007	0.000	0.048	0.004	0.000
Number of Friends Co- nominated	0.075	0.013	0.000	0.434	0.021	0.000
Number of Antagonists Co- nominated	0.388	0.039	0.000	0.878	0.004	0.000
Village Fixed Effects		YES			YES	
Ν		4604534			4604534	

Logistic regression of presence of social tie from ego to alter on all personal and social characteristics. Model includes village fixed effects (not shown).

Relationship Type		Real Observation Counts
	Friend	96,544
The Friend of my Friend is my	Stranger	371,236
	Antagonist	4,159
	Friend	3,966
The Antagonist of my Friend is my	Stranger	63,315
	Antagonist	3,601
	Friend	4,889
The Friend of my Antagonist is my	Stranger	63,513
	Antagonist	5,370
The Antegonist of my Antegonist is	Friend	1,630
The Antagonist of my Antagonist is	Stranger	12,866
my	Antagonist	577

Supplementary Table S13. Summary of counts of triadic relationsh	nips
--	------

	Dependent Variable:					
	<u>Standard</u>	Deviation of I	<u>Degree</u>			
	Coef.	S.E.		Р		
Intercept	1.038	0.174	0.000			
Mean Degree	-0.370	0.021	0.000			
Antagonist Tie Network Indicator	-0.455	0.171	0.008			
Antagonist Tie Network Indicator*Mean Degree	0.378	0.029	0.000			
Village Fixed Effects		NO				
Adjusted R ²		0.944				
Ν		352				

Supplementary Table S14: OLS Regression of Second Moment of Degree on Mean Degree

OLS regression of second moment of the friend and antagonist degree distributions, with multiway clustering of standard errors on village.

v mage Size							
	Dependent Variable:						
	<u>Percent of Antagonistic Ties to All</u> <u>Social Ties</u>						
	Coef.	S.E.		Р			
Intercept	13.730	0.088	0.000				
Village Size	-0.002	0.005	0.633				
Adjusted R ²		0.001					
Ν		176					

Supplementary Table S15: OLS Regression of Village Level Antagonism Prevalence on Village Size

OLS regression of antagonism prevalence on village size.

village Population Density							
	Dependent Variable:						
	<u>Percent of Antagonistic Ties to All</u> <u>Social Ties</u>						
	Coef.	S.E.	Р				
Intercept	13.909	1.111	0.000				
Population Density	-0.001	0.002	0.594				
Adjusted R ²		0.001					
Ν		176					

Supplementary Table S16: OLS Regression of Village Level Antagonism Prevalence on Village Population Density

OLS regression of antagonism prevalence on village population density, measured as average geographic distance between households ("as the crow flies").

Elevation							
	Dependent Variable:						
	Percent of Antagonistic Ties to All						
	<u>Social Ties</u>						
	Coef.	<i>S.E</i> .		Р			
Intercept	-16.920	9.577	0.078				
Elevation	0.064	0.021	0.003				
Elevation ²	-0.00003	0.00001	0.006				
Adjusted R ²		0.051					
Ν		176					

Supplementary Table S17: OLS Regression of Village Level Antagonism Prevalence on Elevation

OLS regression of antagonism prevalence on elevation.

v mage Size							
	Dependent Variable:						
	<u>Percent of Antagonistic Ties to All</u> <u>Social Ties</u>						
	Coef.	S.E.		Р			
Intercept	12.678	2.684	0.000				
Wealth Index	0.240	0.919	0.794				
Adjusted R ²		0.000					
Ν		176					

Supplementary Table S18: OLS Regression of Village Level Antagonism Prevalence on Village Size

OLS regression of antagonism prevalence on village wealth index.

Electricity				
	Dependent Variable:			
	<u>Percent of Antagonistic Ties to All</u> <u>Social Ties</u>			
	Coef.	S.E.		Р
Intercept	14.673	1.237	0.000	
Village Has Electricity	-1.511	1.331	0.258	
Adjusted R ²		0.002		
Ν		176		

Supplementary Table S19: OLS Regression of Village Level Antagonism Prevalence on Electricity

OLS regression of antagonism prevalence on village infrastructure (whether the village has electricity).

Dependent Variable:			ıble:	
		Antagonistic <u>Social Ties</u>	<u>ic Ties to All</u> S	
	Coef.	S.E.	Р	
Intercept	5.959	0.878	0.000	
Closest Village Animosity	56.450	6.049	0.000	
Adjusted R ²		0.330		
Ν		176		

Supplementary Table S20: OLS Regression of Village Level Antagonism Prevalence on Closest Neighboring Village Antagonism Prevalence

OLS regression of antagonism prevalence on the antagonism prevalence of the geographically closest neighboring village ("as the crow flies").

v mage Size				
	Dependent Variable:			
	<u>Percent of Antagonistic Ties to All</u> <u>Social Ties</u>			
	Coef.	S.E.		Р
Intercept	13.730	0.088	0.000	
Village Size	-0.002	0.005	0.633	
Adjusted R ²		0.001		
Ν		176		

Supplementary Table S21: OLS Regression of Village Level Antagonism Prevalence on Village Size

OLS regression of antagonism prevalence on village size.

	Dependent Variable:			
	<u>Percent of Antagonistic Ties to All</u> <u>Social Ties</u>			
	Coef.	<i>S.E</i> .	Р	
Intercept	-12.475	8.324	0.136	
Village Size	0.001	0.005	0.870	
Population Density	-0.002	0.002	0.288	
Elevation	0.040	0.018	0.029	
Elevation ²	0.000	0.000	0.038	
Wealth Index	0.674	0.827	0.416	
Electricity	-1.097	1.176	0.353	
Closest Village Animosity	53.939	6.150	0.000	
Adjusted R ²		0.337		
Ν		176		

Supplementary Table S22: OLS Regression of Village Level Antagonism Prevalence on Village Size, Population Density, Elevation, Wealth, Electricity, and Neighboring Village Animosity

OLS regression of antagonism prevalence on village size, population density, elevation, wealth index, electricity, and animosity level of the geographically closest village ("as the crow flies").

Supplementary Table S23: Visualization of the Heterogenous Triad Census (Census of Directed Triads with Heterogeneous Ties) and Total Observations by Triad Class Across 176 Villages

Visualization	Class Name	Total Observations (#)
•	$B_3F_0E_0U_0S_0$	182,722,667
•	$B_2F_1E_0U_0S_1$	2,877,609
•	$B_2 F_1 E_0 U_0 S_0$	11,802,090
	$B_2 F_0 E_1 U_0 S_1$	61,125
•	$B_2 F_0 E_1 U_0 S_0$	2,441,881
	$B_2 F_0 E_0 U_1 S_0$	74,439
	$B_1F_2E_0U_0S_5$	14,872

	$B_1F_2E_0U_0S_4$	70,316
	$B_1 F_2 E_0 U_0 S_3$	89,116
	$B_1F_2E_0U_0S_2$	89,209
<u> </u>	$B_1F_2E_0U_0S_1$	150,991
	$B_1 F_2 E_0 U_0 S_0$	131,973
	$B_1F_1E_1U_0S_8$	956
0	$B_1F_1E_1U_0S_7$	20,378
	$B_1F_1E_1U_0S_6$	1,951
	$B_1F_1E_1U_0S_5$	46,163

$B_1F_1E_1U_0S_4$	2,236
$B_1F_1E_1U_0S_3$	34,081
 $B_1F_1E_1U_0S_2$	20,947
$B_1F_1E_1U_0S_1$	34,744
$B_1F_1E_1U_0S_0$	51,387
$B_1F_1E_0U_1S_5$	765
$B_1F_1E_0U_1S_4$	1,296
$B_1F_1E_0U_1S_3$	584
$B_1F_1E_0U_1S_2$	1,363

	$B_1F_1E_0U_1S_1$	1,772	
	$B_1F_1E_0U_1S_0$	1,301	
	$B_1F_0E_2U_0S_5$	46	
	$B_1F_0E_2U_0S_4$	541	
\bigwedge	$B_1F_0E_2U_0S_3$	8,479	
	$B_1F_0E_2U_0S_2$	1,035	
<u> </u>	$B_1F_0E_2U_0S_1$	9,586	
<u>k</u> .	$B_1 F_0 E_2 U_0 S_0$	12,254	
	$B_1F_0E_1U_1S_5$	14	

$B_1F_0E_1U_1S_4$	442
$B_1F_0E_1U_1S_3$	41
$B_1F_0E_1U_1S_2$	447
$B_1F_0E_1U_1S_1$	436
$B_1F_0E_1U_1S_0$	564
$B_1F_0E_0U_2S_2$	29
$B_1 F_0 E_0 U_2 S_1$	11
$B_1 F_0 E_0 U_2 S_0$	9
$B_0F_3E_0U_0S_6$	2,204

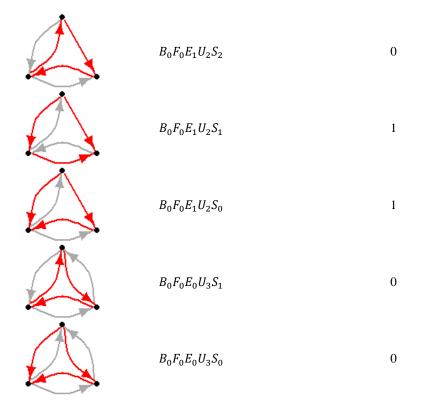
$B_0 F_3 E_0 U_0 S_5$	7,836
$B_0 F_3 E_0 U_0 S_4$	6,697
$B_0F_3E_0U_0S_3$	5,807
$B_0F_3E_0U_0S_2$	1,731
$B_0F_3E_0U_0S_1$	9,261
$B_0F_3E_0U_0S_0$	20,906
$B_0 F_2 E_1 U_0 S_{14}$	9
$B_0 F_2 E_1 U_0 S_{13}$	61
$B_0 F_2 E_1 U_0 S_{12}$	94

$B_0 F_2 E_1 U_0 S_{11}$	230	
$B_0 F_2 E_1 U_0 S_{10}$	582	
$B_0F_2E_1U_0S_9$	48	
$B_0F_2E_1U_0S_8$	789	
$B_0F_2E_1U_0S_7$	64	
$B_0F_2E_1U_0S_6$	422	
$B_0F_2E_1U_0S_5$	738	
$B_0F_2E_1U_0S_4$	68	
$B_0F_2E_1U_0S_3$	824	

$B_0F_2E_1U_0S_2$	2,319
$B_0F_2E_1U_0S_1$	1,818
$B_0F_2E_1U_0S_0$	1,683
$B_0F_2E_0U_1S_8$	45
$B_0F_2E_0U_1S_7$	124
$B_0F_2E_0U_1S_6$	54
$B_0F_2E_0U_1S_5$	47
$B_0F_2E_0U_1S_4$	173
$B_0F_2E_0U_1S_3$	85

	$B_0F_2E_0U_1S_2$	141
	$B_0F_2E_0U_1S_1$	63
	$B_0F_2E_0U_1S_0$	185
	$B_0 F_1 E_2 U_0 S_{14}$	34
	$B_0 F_1 E_2 U_0 S_{13}$	130
	$B_0 F_1 E_2 U_0 S_{12}$	36
\bigwedge	$B_0F_1E_2U_0S_{11}$	132
	$B_0 F_1 E_2 U_0 S_{10}$	85
	$B_0F_1E_2U_0S_9$	108

$B_0F_1E_2U_0S_8$	675
$B_0F_1E_2U_0S_7$	83
$B_0F_1E_2U_0S_6$	263
$B_0F_1E_2U_0S_5$	308
$B_0F_1E_2U_0S_4$	1,158
$B_0F_1E_2U_0S_3$	2,155
$B_0F_1E_2U_0S_2$	142
$B_0F_1E_2U_0S_1$	653
$B_0F_1E_2U_0S_0$	1,445


$B_0 F_1 E_1 U_1 S_{17}$	4
$B_0 F_1 E_1 U_1 S_{16}$	9
$B_0 F_1 E_1 U_1 S_{15}$	11
$B_0 F_1 E_1 U_1 S_{14}$	4
$B_0 F_1 E_1 U_1 S_{13}$	6
$B_0 F_1 E_1 U_1 S_{12}$	7
$B_0 F_1 E_1 U_1 S_{11}$	27
$B_0 F_1 E_1 U_1 S_{10}$	47
$B_0F_1E_1U_1S_9$	53

$B_0F_1E_1U_1S_8$	93
$B_0F_1E_1U_1S_7$	15
$B_0F_1E_1U_1S_6$	23
$B_0F_1E_1U_1S_5$	50
$B_0F_1E_1U_1S_4$	3
$B_0F_1E_1U_1S_3$	24
$B_0F_1E_1U_1S_2$	24
$B_0F_1E_1U_1S_1$	24
$B_0F_1E_1U_1S_0$	82

1		
	$B_0F_1E_0U_2S_6$	4
	$B_0F_1E_0U_2S_5$	0
	$B_0F_1E_0U_2S_4$	4
	$B_0F_1E_0U_2S_3$	8
	$B_0F_1E_0U_2S_2$	2
	$B_0F_1E_0U_2S_1$	2
	$B_0F_1E_0U_2S_0$	4
	$B_0F_0E_3U_0S_6$	0
	$B_0F_0E_3U_0S_5$	1

	$B_0F_0E_3U_0S_4$	11
	$B_0F_0E_3U_0S_3$	9
\bigwedge	$B_0F_0E_3U_0S_2$	21
	$B_0F_0E_3U_0S_1$	29
\bigwedge	$B_0F_0E_3U_0S_0$	414
	$B_0F_0E_2U_1S_8$	0
	$B_0F_0E_2U_1S_7$	1
	$B_0F_0E_2U_1S_6$	0
	$B_0F_0E_2U_1S_5$	0

$B_0F_0E_2U_1S_4$	2
$B_0F_0E_2U_1S_3$	3
$B_0F_0E_2U_1S_2$	13
$B_0F_0E_2U_1S_1$	12
$B_0F_0E_2U_1S_0$	32
$B_0F_0E_1U_2S_6$	0
$B_0F_0E_1U_2S_5$	0
$B_0F_0E_1U_2S_4$	0
$B_0F_0E_1U_2S_3$	4

Complete census of 138 triad classes in a directed network with positive (gray) and negative (red) ties (column 1), with a consistent naming scheme in column 2 (see SI). We report the total number of observations of the triad type across villages in column 3.