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Abstract: The intrinsic estimator (IE) has become a widely used tool for the analysis of age–period–
cohort (APC) data in sociology, demography, and other fields. However, it has been recently recognized
that the IE is a subtype of a larger class of estimators based on the Moore–Penrose generalized
inverse (MP estimators) and that different estimators can lead to radically divergent estimates of the
true, unknown APC effects. To clarify the differences and similarities of MP estimators, we introduce
a canonical form of the linear constraints imposed on the true temporal effects. Using this canonical
form, we compare the IE to related MP estimators, examining the conditions under which they
recover the true temporal effects, the impact of the size and sign of nonlinearities on the estimated
linear effects, and their sensitivity to the number of age, period, and cohort categories. We show
that two MP estimators, which we call the difference estimator (DE) and the orthogonal estimator
(OE), impose constraints that are both less sensitive and easier to interpret than those of the IE. We
conclude with practical guidelines for researchers interested in using MP estimators to estimate
temporal effects.

Keywords: age–period–cohort analysis; intrinsic estimator; identification problem; Moore–Penrose
generalized inverse

THE intrinsic estimator (IE) has become a popular technique for estimating age–
period–cohort (APC) effects1 across a wide range of fields. In recent years,

researchers have used the IE to examine temporal trends in pornography use
(Price et al. 2016), behavioral problems in adolescents (Keyes et al. 2017), heart
disease mortality (Kramer, Valderrama, and Casper 2015), breast cancer mortality
(Li, Yu, and Wang 2015), obesity in China (Fu and Land 2015), and social trust
(Hu 2015), among other topics. Although popular, the IE is just one of a broader
class of estimators based on the Moore–Penrose generalized inverse (MP estimators
hereafter).2 As recently recognized in the methodological literature (Land et al.
2016), MP estimators are defined by applying the Moore–Penrose generalized
inverse to different design matrices, and the IE is that particular MP estimator that
uses a design matrix of sum-to-zero effect (or deviation) coding.3

The fact that the IE is a subtype of a larger class of MP estimators raises a crucial
question, especially in light of recent criticisms leveled against the IE (Luo 2013;
O’Brien 2011, 2015): which MP estimator, if any, should researchers use when
analyzing temporal trends? The desirable statistical properties typically used to
justify the IE are of little guidance because these are shared by all MP estimators.
That is, all MP estimators produce results that are estimable,4 are unbiased given
the linear constraint imposed by the estimator, and have minimum variance among
estimators based on the same design matrix (Fu 2016; O’Brien 2015; Yang and Land
2013a). However, MP estimators are unalike in that they impose different linear
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constraints on the true, unknown APC effects, thereby generating divergent sets
of parameter estimates, as shown by two recent articles (Luo et al. 2016; Pelzer
et al. 2014). Unfortunately, the form of the linear constraints also differs across MP
estimators, making it exceedingly difficult, if not impossible, for researchers to
compare the specific assumptions of these estimators, let alone ascertain whether or
not such assumptions are reasonable in any given application. This is especially
problematic because the typical goal of APC analysis is to recover the true, unknown
temporal effects (Luo 2013: 1951–52).

To resolve this problem, we introduce a canonical form of the linear constraints
imposed by the IE and related MP estimators on the true, unknown APC effects.
Using this canonical form of the constraints, we compare various MP estimators,
evaluating the conditions under which they recover the true temporal effects, the
impact of the magnitude and direction of nonlinearities on their estimated linear
effects, and their sensitivity to the number of age, period, and cohort categories.
Importantly, we show that two MP estimators, which we call the orthogonal estima-
tor (OE) and the difference estimator (DE), impose linear constraints that are both
less sensitive and easier to interpret than those of the IE. However, we emphasize
that there is, to our knowledge, no social, biological, or cultural theory that claims
that the true, unknown linear effects should conform to the particular constraints
imposed by MP estimators. In deriving the canonical constraints of MP estimators,
we further prove that, mathematically, the APC identification problem is always
restricted to the linear effects and that the solution line, which is a geometric repre-
sentation of the identification problem, is always reducible to just three dimensions
defined by the set of possible slopes. Accordingly, the IE and related MP estimators
will, in general, produce the same set of nonlinear effects but different linear effects.

The rest of the article is organized as follows. First, we briefly review the APC
identification problem and the Moore–Penrose generalized inverse. Second, we
define the IE and discuss how all MP estimators are minimum-norm,5 least-squares
estimators. Third, we discuss the shared as well as divergent properties of MP
estimators. Fourth, we illustrate how any APC design matrix can be separated
into the linear and nonlinear components using a transformation matrix. We then
prove that the APC identification problem is always restricted to the linear effects
and that the solution line can always be simplified to three dimensions. Fifth,
we introduce a canonical form of the linear constraints of the IE and related MP
estimators, demonstrating that these estimators impose a linear constraint on the
slopes but not the nonlinearities. Next, using the canonical form of the constraints,
we compare the IE and related MP estimators mathematically, showing explicitly
how the constraints can differ based on the size and direction of nonlinear effects,
the choice of reference category, and the number of age, period, and cohort groups.
Then, using simulated data, we evaluate the efficacy of several MP estimators,
including the IE, in recovering the true temporal effects. Finally, we conclude with
practical guidelines for applied researchers wishing to use the IE and related MP
estimators to analyze APC data.
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Generalized Inverses and the APC Identification Problem

To clarify the discussion that follows, suppose we have categorically coded age,
period, and cohort data for a set of n respondents.6 We let i = 1, . . . , I denote the
unique age groups, j = 1, . . . , J the unique period groups, and k = 1, . . . , K the
unique cohort groups with k = j− i + I and K = I + J − 1.7 We let n denote the
number of respondents. The model we would like to run is

Yijk = µ +
I

∑
i=1

(αi)(agei) +
J

∑
j=1

(πj)(periodj) +
K

∑
k=1

(γk)(cohortk) + εijk, (1)

which we refer to as the classical APC (C-APC) model, also known as the multiple
classification or accounting model. For simplicity, we can express the C-APC in
matrix terms as

y = Xb + ε, (2)

where y is an n× 1 outcome vector, which without loss of generality, we assume to
be continuous; X is a design matrix of categorical age, period, and cohort variables
with dimension n× p; b is a p× 1 parameter vector with elements corresponding
to the age, period, and cohort groups; and ε is an n× 1 vector of random errors.8 If
there were no linear dependence in X, then we could obtain a unique least-squares
solution

bOLS = (XTX)−1XTy, (3)

where the superscripted −1 indicates the regular inverse. However, due to linear
dependence, X is rank deficient one, and a regular inverse of XTX does not exist.
Thus, we cannot estimate bOLS, and any particular least-squares solution requires
an additional constraint.

Using what is known as a generalized inverse, it is possible to produce con-
strained estimates of the parameters b that are consistent with the data (e.g., see
O’Brien 2015: 27–29). Unfortunately, there are an infinite number of generalized
inverses, and in general, different inverses will produce different sets of estimates.
Each of the constrained estimates for a particular design matrix lie on what is called
the solution line of estimates in multidimensional space (O’Brien 2015: 27–28). The
solution line is a geometric representation of the identification problem, reflecting
the lack of a unique set of estimates. To construct the solution line, we let b* denote
any specific constrained least-squares solution to the least-squares normal equa-
tions. For any particular constraint, we can construct a generalized inverse of XTX
to find a corresponding solution

b* = (XTX)*XTy, (4)

where the superscript ∗ denotes the appropriate generalized inverse. The vector b*

is a least-squares solution to the normal equations such that XTb* = XTy. We can
then write9

b = b* + sv, (5)
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where s is an arbitrary scalar that can take on any real number and v is the eigen-
vector with the zero eigenvalue, or null vector, of a given design matrix. The null
vector gives the form of the linear dependency for a particular design matrix and is
unique up to a scalar (O’Brien 2015: 30–32,56–57). By varying s, we trace out the so-
lution line for a given design matrix, resulting in an infinite number of constrained
least-squares solutions.

Among the infinite number of generalized inverses for a particular design matrix,
what is known as the Moore–Penrose generalized inverse has received significant
attention due to its unique properties (Ben-Israel 2002). Using the Moore–Penrose
generalized inverse gives us, parallel to the traditional ordinary least-squares (OLS)
formula

bMP = (XTX)+XTy = X+y, (6)

where the superscript + denotes the Moore–Penrose generalized inverse and, again,
X is a design matrix of categorical age, period, and cohort variables. Equation
6 underscores that the MP estimator is based on (XTX)+ or, equivalently, X+.
Formally, X+ is defined as a generalized inverse meeting four Moore–Penrose
conditions:

1. General condition: XX+X = X
2. Reflexive condition: X+XX+ = X+

3. Normalized condition: (XX+)T = XX+

4. Reverse normalized condition: (X+X)T = X+X.

These conditions specify that for any particular matrix X, the Moore–Penrose gener-
alized inverse always exists (i.e., it is well defined) and is unique (i.e., there is only
one such generalized inverse that meets these conditions). From the four conditions
above, we can express the solution in terms of the normal equations, and it can be
shown that if X is of full rank, then X+y = (XTX)−1XTy.10 In the following section,
we discuss how to interpret the MP solution in the case of APC data, which is rank
deficient one.

Deriving and Defining MP Estimators

As mentioned previously, the application of the Moore–Penrose generalized inverse
to different design matrices or coding schemes defines a broad class of constrained
estimators, which we term MP estimators. As long as the design matrix represents
the full range of possible APC categories, various coding schemes may be used, such
as treatment coding with the first category omitted or sum-to-zero effect coding
with the last category omitted.11 The IE is defined as that particular MP estimator
based on a design matrix of sum-to-zero effect (or deviation) contrasts (Land et al.
2016: 964). However, it is important to clarify that the phrase "intrinsic estimator"
has been used in at least two different ways by the proponents of the IE (e.g., Fu
2000, 2008, 2016; Land et al. 2016; Yang and Land 2013a: 79). In particular, in his sole-
authored work, Fu defines the IE as a general class of estimators derived from the
Moore–Penrose generalized inverse without reference to the specific structure of the
design matrix (Fu 2000; Fu 2008: 332–3; Fu 2016). In contrast, Land and colleagues
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(Land et al. 2016: 964–71) state explicitly that "only the sum-to-zero [effect] coding is
used to define and estimate the IE." Furthermore, they assert that because there are
any number of design matrices that can produce different sets of estimates, there
are "infinitely many possible pseudo-IE estimators." To eliminate this ambiguity,
we will refer to Fu’s broad class of estimators simply as MP estimators and the
narrower set of MP estimators with sum-to-zero effect coding as the IE, as preferred
by Land and colleagues. We now turn to how to derive and define MP estimators
formally.

Deriving MP Estimators

There are many ways to derive the estimates of an MP estimator (e.g., see Yang
and Land 2013a: 79–80). An especially intuitive approach, which has not received
significant attention in the APC literature, is to find the Moore–Penrose generalized
inverse of XTX using a decomposition technique. For a given design matrix X, we
can write

XTX = VΛVT , (7)

where VΛVT is the spectral (or eigenvalue) decomposition of XTX. The p× p diago-
nal matrix Λ consists of the eigenvalues of XTX in descending order λ1, λ2, . . . , λr−1,
with the rank of the matrix r = p− 1. It is straightforward to find the Moore–Penrose
generalized inverse of XTX using this decomposition. First, we take the recipro-
cal of the nonzero eigenvalues along the diagonal, keeping the zero eigenvalues.
This will give the generalized inverse of Λ, denoted as Λ+. Second, we calculate
VΛ+VT = (XTX)+. Finally, we use (XTX)+ to find the Moore–Penrose generalized
inverse estimates b+ = (XTX)+XTy.

In addition to allowing for the estimation of MP estimators, the decomposition
of XTX reveals two crucial features of the data. First, the number of nonzero
eigenvalues in Λ gives the rank of the matrix XTX. Because the columns of the
data are linearly dependent, there will always be one zero eigenvalue, and thus
the design matrix for any APC data set is always rank deficient one. Second, along
with the zero eigenvalue in Λ, there will always be a corresponding eigenvector in
Λ, which is the orthonormal basis for the null space of XTX. This is the null vector,
or the eigenvector with a zero eigenvalue, which encodes the linear dependency
in the data.12 In the case of APC data, different design matrices have different
forms of linear dependencies and thus different null vectors. As we discuss later,
converting the null vector of an MP estimator into a canonical form is crucial for
understanding and comparing the assumptions it requires about the true, unknown
temporal effects.

Defining MP Estimators

An MP estimator can be defined formally as the solution orthogonal (or perpen-
dicular) to the null vector of a particular design matrix (O’Brien 2015: 30–32). To
understand this definition, note that like any constrained estimator, we can use
an MP estimator to construct a solution line for a given design matrix such that
b = bMP + sv. Among the values of s, an MP estimator assumes s = 0 in the
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equation b = bMP + sv (Fu 2016: 183). Geometrically, an MP estimator is the least-
squares solution corresponding to the point on the line closest to the origin in terms
of Euclidean distance. This point coincides with the minimium (Euclidean) length
of bMP + sv, which is at its minimum when s = 0.13 Equivalently, the vector bMP is
the projection of b on the nonnull space of X, which is orthogonal to the null space
(Yang and Land 2013a: 81)

bMP = (I− v̂v̂T)b, (8)

where I is a p × p identity matrix and v̂ is the normalized null vector so that
v̂Tv̂ = 1.14 That is, an MP estimator separates the true, unknown parameter b
into two orthogonal components, the null vector v and the vector of MP estimates
bMP. Because these two vectors are perpendicular to each other, vTbMP = 0 or,
equivalently, s = 0 in the solution line defined by bMP + sv.

Because an MP estimator finds that particular set of least-squares estimates on
the solution line for which the (Euclidean) length is minimized, it is a minimum-
norm, least-squares (MNLS) solution (Ben-Israel 2002: 109). Although it has not been
explicitly stated as such in the APC literature, any MP estimator is fundamentally a
two-stage minimization algorithm:

Stage 1: Find those values of b that minimize ‖Xb− y‖2 (9)

Stage 2: Minimize ‖b‖2 among all solutions from Stage 1, (10)

where the operator ‖ . ‖2 denotes the L2 (or Euclidean) norm and X is a given design
matrix of age, period, and cohort variables. In the first stage, the MP estimator
finds the least-squares solution to Xb = y. For full rank data, there is a unique
solution, and the algorithm ends. However, in the case of APC data, the design
matrix X is rank deficient one, and thus there is no unique least-squares solution;
rather, as described previously, there are many such solutions lying on a line in
multidimensional space. In the second stage, the MP estimator selects a solution
by applying the minimum-norm constraint. Among the least-squares estimates on
the solution line, the MP estimator selects that particular set of estimates with the
minimum (Euclidean) length or, equivalently, that is closest to the origin in terms of
Euclidean distance.15

Properties of MP Estimators

We now turn to an examination of the shared as well as divergent properties of
MP estimators, including the IE. We focus here on those shared properties that are
considered desirable in the methodological literature (Fu 2000; Fu 2016; Fu and Hall
2006; Fu, Land, and Yang 2011; Yang et al. 2008; Yang, Fu, and Land 2004): first,
an MP estimator has minimum sampling variance among all possible estimators
based on its specific design matrix; second, it is an estimable function, meaning
that it produces a unique set of estimates for the effects of age, period and cohort;
finally, it is unbiased, meaning that the average of any estimates produced by an
MP estimator over an infinite number of simple random samples will be equal to
that estimator’s values when it is applied to the full population data. However,

sociological science | www.sociologicalscience.com 309 June 2018 | Volume 5



Fosse and Winship Moore–Penrose Estimators

MP estimators diverge in a critically important way: because they are based on
different design matrices, they will have different null vectors and in turn impose
different linear constraints on the true, unknown temporal effects (Luo et al. 2016;
Pelzer et al. 2014).

Shared Desirable Statistical Properties

There are several desirable statistical properties shared by all MP estimators. First,
for any given design matrix, an MP estimator will be that estimator with the
minimum sampling variance (Yang et al. 2004: 102–3,108; Yang et al. 2008: 1709;
Yang and Land 2013a: 86,116–7). This is a function of the fact that any MP estimator
will give that set of estimates that is shortest in Eucldean norm. Consequently, if
we were to use another type of generalized inverse other than the Moore–Penrose
for some fixed design matrix, the resulting estimates would have greater sampling
variance.

Second, an MP estimator is always an estimable function (Fu et al. 2011: 456–8;
Yang and Land 2013a: 84–85). To state that a function is estimable means that when
applied to data, it produces a unique set of estimates. Intuitively, it means that
it is possible for the data to tell us what the function equals. For example, if we
have variables that are linearly dependent, then the standard OLS function is not
estimable because it is based on a regular inverse that is not well defined (i.e., it
does not exist) due to the linear dependence in the design matrix. In contrast, MP
estimators are estimable because the Moore–Penrose generalized inverse is well
defined (i.e., it exists) even when the variables are linearly dependent. Specifically,
an MP estimator applies a particular mathematical constraint on the estimates that
will only be satisfied by a single point on the solution line. As stated previously,
the estimates will be that set under the Euclidean distance metric (or, equivalently,
correspond with the minimum L2 norm). The MP estimates are estimable in the
very specific sense that for a particular design matrix and outcome, there is a set of
points closest in Euclidean distance to the origin on the solution line.16

Finally, all MP estimators are unbiased, meaning that the average of any esti-
mates produced by an MP estimator over an infinite number of simple random
samples will equal that estimator’s values when it is applied to the full population
data (Yang et al. 2004: 101–2,107; Yang et al. 2008: 1709; Yang and Land 2013a:
86,115–6). A function is unbiased if, when it is calculated for an infinite number
of random samples, its average is equal to its value when it is calculated on the
population as a whole.17 In the context of any specific MP estimator, this means that
if we had an infinite number of samples and applied this estimator in each sample,
then the average of the estimates across these samples would equal the estimates
produced by using this same estimator on the whole population.

The Linear Constraint on the True Temporal Effects

The foregoing underscores that the desirable statistical properties typically used to
justify the IE are not unique to it but shared by all MP estimators.18 To emphasize,
using various alternative design matrices with the Moore–Penrose generalized
inverse will also produce estimates, like the IE, that are estimable, unbiased, and
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have minimum variance relative to other estimators based on that design matrix.
However, results from MP estimators differ, sometimes radically so, due to the
structure of the design matrix.

To recognize why this is the case, it is crucial to understand that the null vector
encodes the linear dependency among the columns of a design matrix. For any
given design matrix, at least one of the columns of X can be rewritten as a linear
combination of the other columns.19 Formally, there is a nontrivial linear combina-
tion of the columns of X that results in a vector of zeros such that Xv = 0, where v
is the p× 1 null vector and 0 is an n× 1 vector of zeros. As mentioned previously,
the null vector v represents the null space of X and is unique up to multiplication
by an arbitrary scalar s. Accordingly, the equation Xv = 0 generalizes to Xsv = 0.

The main assumption of any MP estimator is that the true, unknown temporal
effects conform to the linear dependency of the particular design matrix on which it
is based. To show this, note that the linear constraint imposed by an MP estimator
will yield the true parameter of APC effects b only if s = 0 in the equation b =

bMP + sv (see Land et al. 2016: 966; Yang and Land 2013a: 82), so

bMP = b, when s = 0 and

bMP 6= b, when s 6= 0.
(11)

Rearranging b = bMP + sv and taking the expectation, we know that E(bMP) = b−
sv. Thus, the expected value of the MP estimate will not equal the true, unknown
temporal effects unless s = 0. Assuming s = 0 is equivalent to assuming that
vTb = 0 because if s = 0, then b = bMP + sv becomes bMP = b (see Luo 2013:
1951–3). Hence, vTbMP = vTb = 0. In other words, any MP estimator assumes
that the true, unknown temporal effects conform to the linear dependency of its
particular design matrix.

Unfortunately, the linear constraints imposed by MP estimators have divergent
forms, precluding substantive interpretation or comparison across estimators. To
illustrate the differing linear constraints, in Table 1, we show the linear constraints of
nine MP estimators applied to data with I = 3 age groups and J = 3 period groups.
We focus here on MP estimators based on contrast coding schemes commonly
discussed in the applied statistics literature (e.g., Fox 2002: 126–30; Onyiah 2008:
121–36,148–61; Venables and Ripley 2013: 146–9) as well as those employed in the
methodological literature on APC effects in sociology and demography (e.g., Luo
et al. 2016; O’Brien 2015: 55–57; Pelzer et al. 2014). We present the parameters in
detailed form in Table 1 so as to clarify their substantive interpretation. Specifically,
for some parameter β, we let βk denote the average of the kth category, β̄ the average
of all k = 1, . . . k = K levels, βi:j the average of levels i through j, and βk the kth
orthogonal polynomial term. For example, γ2 is the average of the second cohort
category; γ̄ is the average across all cohort categories; γ2:4 is the average of cohort
categories two, three, and four; and γ2 is the second-order orthogonal polynomial
term for the cohort variable.

As shown in Table 1, we examine the linear constraints of the following esti-
mators: (1) IEFirst, or the IE, which uses sum-to-zero effect coding with the first
category of each variable omitted (e.g., α2 − ᾱ compares the average of the second
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Table 1: Linear constraints of MP estimators with I = 3 and J = 3 groups.

MP
Estimator

Linear
Constraint

IEFirst: (0)µ + (0)(α2 − ᾱ) + (1)(α3 − ᾱ) + (0)(π2 − π̄) + (−1)(π3 − π̄) + (−1)(γ2 − γ̄)

+(0)(γ3 − γ̄) + (1)(γ4 − γ̄) + (2)(γ5 − γ̄) = 0

IELast: (0)µ + (1)(α1 − ᾱ) + (0)(α2 − ᾱ) + (−1)(π1 − π̄) + (0)(π2 − π̄) + (2)(γ1 − γ̄)

+(1)(γ2 − γ̄) + (0)(γ3 − γ̄) + (−1)(γ4 − γ̄) = 0

TEFirst: (0)µ + (1)(α2 − α1) + (2)(α3 − α1) + (−1)(π2 − π1) + (−2)(π3 − π1) + (1)(γ2 − γ1)

+(2)(γ3 − γ1) + (3)(γ4 − γ1) + (4)(γ5 − γ1) = 0

TELast: (0)µ + (2)(α1 − α3) + (1)(α2 − α3) + (−2)(π1 − π3) + (−1)(π2 − π3) + (4)(γ1 − γ5)

+(3)(γ2 − γ5) + (2)(γ3 − γ5) + (1)(γ4 − γ5) = 0

HEBackward: (0)µ + (2)(α2 − α1) + (3)(α3 − α1:2) + (−2)(π2 − π1) + (−3)(π3 − π2:3) + (2)(γ2 − γ1)

+(3)(γ3 − γ1:2) + (4)(γ4 − γ1:3) + (5)(γ5 − γ1:4) = 0

HEForward: (0)µ + (3)(α1 − α2:3) + (2)(α2 − α3) + (−3)(π1 − π2:3) + (−2)(π2 − π3) + (5)(γ1 − γ2:5)

+(4)(γ2 − γ3:5) + (3)(γ3 − γ4:5) + (2)(γ4 − γ5) = 0

DEBackward: (0)µ + (1)(α2 − α1) + (1)(α3 − α2) + (−1)(π2 − π1) + (−1)(π3 − π2) + (1)(γ2 − γ1)

+(1)(γ3 − γ2) + (1)(γ4 − γ3) + (1)(γ5 − γ4) = 0

DEForward: (0)µ + (1)(α1 − α2) + (1)(α2 − α3) + (−1)(π1 − π2) + (−1)(π2 − π3) + (1)(γ1 − γ2)

+(1)(γ2 − γ3) + (1)(γ3 − γ4) + (1)(γ4 − γ5) = 0

OE: (0)µ + (1)(α) + (0)(α2) + (−1)(π) + (0)(π2) + (1)(γ)

+(0)(γ2) + (0)(γ3) + (0)(γ4) = 0

Notes: Based on data with I = 3 age, J = 3 period, and K = I + J − 1 = 5 cohort groups.
Linear constraints are calculated using vTb = 0, where b are the true, unknown temporal effects for a given design

matrix. All MP estimators assume that vTbMP = vTb = 0. For some parameter β, we let βk denote the average of the
kth category, β̄ the average of all k = 1, . . . k = K levels, βi:j the average of levels i through j, and βk the kth orthogonal
polynomial term. For example, γ2 is the average of the second cohort category; γ̄ is the average across all cohort
categories; γ2:4 is the average of cohort categories two, three, and four; and γ2 is the second-order orthogonal polynomial
term for the cohort variable.

age category with the average of all age categories); (2) IELast, also the IE, which
uses sum-to-zero effect coding with the last category omitted for each variable (e.g.,
α1 − ᾱ compares the average of the first age category with the average of all age
categories); (3) TEFirst, or the treatment estimator (TE), which uses treatment con-
trasts with the first category of each variable as a reference (e.g., α3 − α1 compares
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the average of the third age category with the average of the first age category); (4)
TELast, also the TE, which uses treatment contrasts with the last category of each
variable as a reference (e.g., α1 − α3 compares the average of the first age category
with the average of the last age category); (5) HEBackward, or the helmert estima-
tor (HE), which uses backward helmert contrasts with the first category of each
variable omitted (e.g., α3 − α1:2 compares the average of the last age category with
the average of the two preceding age categories); (6) HEForward, also the HE, which
uses forward helmert contrasts with the last category of each variable omitted (e.g.,
α1 − α2:3 compares the average of the first age category with the average of the
two subsequent age categories); (7) DEBackward, or the difference estimator (DE),
which uses backward successive differences with the first category of each variable
omitted (e.g., α2 − α1 and α3 − α2 compare the averages of adjacent age categories);
(8) DEForward, also the DE, which uses forward successive differences with the last
category of each variable omitted (e.g., α1 − α2 and α2 − α3 compare the averages of
adjacent age categories); and (9) OE, or the orthogonal estimator (OE), which uses
sum-to-zero orthogonal polynomial contrasts or, more generally, sum-to-zero effect
coding with the linear and nonlinear components orthogonalized (e.g., α is the age
linear effect, α2 is the quadratic age effect, and α3 is the cubic age effect).

Table 1 reveals that MP estimators differ greatly in terms of the linear constraints
they impose on the true temporal effects. The constraint vTb = 0 will differ across
MP estimators because the parameter vector b as well as the null vector v both
depend on the structure of the design matrix. As shown in Table 1, not only
is it exceedingly difficult to interpret the linear constraint of any particular MP
estimator but it is seemingly impossible to compare the constraints across various
MP estimators. For instance, as indicated in Table 1, with I = 3 age groups, J = 3
period groups, and I + J − 1 = K = 5 cohort groups, the IELast assumes that vTb =

(0)µ + (1)(α1 − ᾱ) + (0)(α2 − ᾱ) + (−1)(π1 − π̄) + (0)(π2 − π̄) + (2)(γ1 − γ̄) +

(1)(γ2 − γ̄) + (0)(γ3 − γ̄) + (−1)(γ4 − γ̄) = 0. In contrast, when used on a data
set with the identical number of age, period, and cohort groups, the TELast assumes
that vTb = (0)µ + (2)(α1− α3) + (1)(α2− α3) + (−2)(π1−π3) + (−1)(π2−π3) +

(4)(γ1−γ5)+ (3)(γ2−γ5)+ (2)(γ3−γ5)+ (1)(γ4−γ5) = 0. Due to the disparate
forms of these constraints, it is not at all clear how the IELast and the TELast are
similar and how they are different, let alone how they compare to any of the other
MP estimators in Table 1. Fortunately, in the following sections, we develop a
canonical form of the linear constraints that facilitates the systematic interpretation
and comparison of MP estimators.

The Transformation Matrix

An MP estimator consists of a particular design matrix in conjunction with the
Moore–Penrose generalized inverse. Given that there are many such design matri-
ces, potentially an infinite number, a technique is needed for comparing the results
of different MP estimators. In this section, we show how, using a special trans-
formation matrix, any APC design matrix can be converted into a canonical form
that separates the linear from the nonlinear components. Using this transformation
matrix, we then show that the APC identification problem is always restricted to
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the linear effects, that any particular parameter can be decomposed into linear and
nonlinear components, and that the solution line can always be simplified to three
dimensions.

Constructing the Transformation Matrix

If we have two design matrices, X and X*, each of which provides a full representa-
tion of the age, period, and cohort effects and as such are deficient rank one, then
there will always be an invertible p× p transformation matrix T of full rank such
that (Luo et al. 2016: 947)

XT = X* and X = X*T−1. (12)

However, given a set of MP estimators defined by different design matrices along
with their corresponding estimates, we need to decide on a common design matrix
X* as a basis for comparison. We will let XO denote the canonical form of any APC de-
sign matrix. The corresponding parameter bO = (µ, α, α2 . . . αI−1, π, π2 . . . αJ−1, γ, γ2

. . . γK−1) represents the full set of orthogonally separated linear and nonlinear
components for age, period, and cohort. The null vector of XO has the simple
representation

vO = (0, 1,−1, 1, 0 . . . 0), (13)

where the first zero corresponds to the intercept; the elements one, negative one, and
one correspond to the age, period, and cohort linear components; and the remaining
zeros correspond to the (I − 2) + (J − 2) + (K− 2) nonlinear components. That is,
the null vector vO encodes the fundamental linear relationship underlying all APC
data, namely that a person’s age minus their year of measurement plus their birth
year equals zero.

To convert any APC data set into canonical form, we will construct a special
transformation matrix T (cf. Luo et al. 2016: 947–52). Let A, P, and C denote the
original, untransformed contrast matrices for age, period, and cohort terms, with
dimensions I × (I − 1), J × (J − 1), and K× (K− 1), respectively. Although sum-
to-zero effect (or deviation) coding is the most frequently used in the APC literature,
these matrices may be coded with any number of schemes without loss of generality.
Each of these contrast matrices has full column rank but not full row rank. Hence,
we can construct three left inverses

AL = (ATA)−1AT ,
PL = (PTP)−1PT ,
CL = (CTC)−1CT ,

(14)

where the superscript L denotes a left inverse. Let AO, PO, and CO denote corre-
sponding contrast matrices for age, period, and cohort, in which the linear and
nonlinear components are orthogonal to each other (Draper and Smith 2014: 461–
72). We are now in position to construct the transformation matrix T, which is a
block diagonal matrix in which the main diagonal blocks are square matrices and
off-diagonal blocks are zero matrices. The transformation matrix T has the generic
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form
T = 1⊕ALAO ⊕ PLPO ⊕CLCO (15)

or, equivalently,

T =


1 0 0 0
0 ALAO 0 0
0 0 PLPO 0
0 0 0 CLCO

 (16)

where ⊕ is the direct sum. As we demonstrate in the next section, using T, we can
convert any design matrix and parameter vector of an APC data set into canonical
form.

Critical Insights Using the Transformation Matrix

Using the transformation matrix, we can make several important insights that will
greatly simplify the interpretation and comparison of APC estimators. First, we
can prove that the results of any constrained estimator, including any MP estimator,
will differ only in terms of their estimated linear effects. Specifically, using T, we
can convert any design matrix X as well as its corresponding parameter vector b
into canonical form (cf. Luo et al. 2016: 947)

Xb =
(
XT
)(

T−1b
)
= XObO, (17)

where again XO is a design matrix of orthogonal linear and nonlinear components
and bO is a vector of the new, transformed estimates expressed in terms of linear
and nonlinear effects. Because the null vector of XO consists of nonzero elements
only for the age, period, and cohort linear effects,20 and we can convert any design
matrix into the canonical form XO, this proves that the APC identification problem
is restricted to the linear effects and that the intercept and nonlinear effects of any
constrained APC estimator are identified.21

Second, using T, we can decompose any particular parameter into its constituent
linear and nonlinear components. To decompose a parameter vector, we use the
equation b = TbO, where b is the original set of temporal effects, T is the transfor-
mation matrix defined above, and bO are the effects expressed in canonical form. In
Table 2, we show how to use the transformation matrix to decompose sum-to-zero
effects (with the last category omitted) into a set of linear and nonlinear parameters.
For example, in the case of I = 3 age groups, the first age parameter with sum-to-
zero effect coding represents α1 − ᾱ, or the difference between the average of the
first age category and the average across all age categories. This particular parame-
ter is mathematically equal to a weighted sum of the age slope and the quadratic
age effect: (α1 − ᾱ) = (−1)α + (1)α2. As we show later, this decomposition allows
us to express the linear constraints of MP estimators in a canonical form.

Finally, using the transformation matrix, we can derive a canonical form of the
solution line. Researchers have noted that any particular design matrix defines a
multidimensional solution line in parameter space (Luo et al. 2016; O’Brien 2011;
O’Brien 2015: 59–91). However, it has not been fully appreciated that the solution
line for any constrained estimator, including the MP estimator, can be greatly
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Table 2: Decomposition of sum-to-zero effects using the transformation matrix.

Decomposed Effect

Sum-to-Zero
Effect

Linear
Component

Nonlinear
Component

(α1 − ᾱ) = (−1)α + (1)α2

(α2 − ᾱ) = (0)α + (−2)α2

(π1 − π̄) = (−1)π + (1)π2

(π2 − π̄) = (0)π + (−2)π2

(γ1 − γ̄) = (−2)γ + (2)γ2 + (−1)γ3 + (1)γ4

(γ2 − γ̄) = (−1)γ + (−1)γ2 + (2)γ3 + (−4)γ4

(γ3 − γ̄) = (0)γ + (−2)γ2 + (0)γ3 + (6)γ4

(γ4 − γ̄) = (1)γ + (−1)γ2 + (−2)γ3 + (−4)γ4

Notes: Decomposition based on I = 3 age, J = 3 period, and K = I + J − 1 = 5 cohort groups. Inverse
of the transformation is used to decompose original sum-to-zero effect coding into linear and nonlinear
components such that bEffect = TbO. Last category is omitted for each variable. For some parameter β, we
let βk denote the average of the kth category, β̄ the average of all k = 1, . . . k = K levels, and βk the kth
orthogonal polynomial term. For example, γ2 is the average of the second cohort category, γ̄ is the average
across all cohort categories, and γ2 is the second-order orthogonal polynomial term for the cohort variable.

simplified. Using the transformation matrix outlined previously, we can make an
important generalization: all constrained APC estimators lie on the same simplified
solution line in three-dimensional space, or what we call the canonical solution line.
Specifically, because T−1b = bO, we can express the equation for the solution line
for any APC design matrix as

bO = b∗O + sT−1v, (18)

where b∗O is a constrained set of estimates separated into nonlinear and linear
components. Moreover, because sT−1v = svO, we can write

bO = b∗O + svO (19)

or, equivalently,
α* = α + s

π* = π − s

γ* = γ + s,

(20)
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Figure 1: The canonical solution line. Notes: Data generated using values of α = 1.000, α2 = 0.050, π = −4.000,
π2 = −0.250, γ = 6.000, γ2 = 0.500, γ3 = 0.100, and γ4 = 0.050. Data consist of I = 8 age groups, J = 5
period groups, and I + J − 1 = K = 12 cohort groups.

where α, π, and γ denote the true, unknown data-generating slopes; s is an arbitrary
scalar; and the asterisks denote any particular constrained set of estimates on the
solution line. Because, as mentioned previously, s can take on any real number,
Equation 20 defines a line in a three-dimensional space for the design matrix XT =

XO or, in other words, the canonical design matrix. For example, Figure 1 visualizes
the solution line for APC data generated using values of α = 1, π = −4, and γ = 6
along with a set of nonlinear effects. Because the nonlinearities are identified, all
possible estimates of the temporal effects lie on the line in the three-dimensional
space in Figure 1.

Canonical Linear Constraints of MP Estimators

The major obstacle to understanding and comparing the linear constraints imposed
by various MP estimators is that they differ greatly because they are a function
of the design matrix. However, using the transformation matrix described in the
previous section, we can derive a canonical form of the linear constraints of the
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IE and related MP estimators. To obtain the canonical linear constraint of an MP
estimator we can use the equation

vTTbO = 0, (21)

where again b is the original set of parameters; T is the transformation matrix; v
is the original, untransformed null vector;22 and bO is the set of the parameters
expressed in canonical form, with separate linear and nonlinear effects. There are
several steps to deriving the canonical linear constraint of a particular MP estimator.
First, we use the transformation matrix to decompose each parameter into its linear
and nonlinear components: b = TbO. Next, we multiply the parameter vector
of decomposed effects by the original, untransformed null vector vT . Finally, we
rearrange terms so that the parameters representing the nonlinear effects are on the
right-hand side of the equation and then simplify. This will give us us the canonical
linear constraint for that particular MP estimator.

Like linear constraints discussed previously, the canonical linear constraints will
differ across estimators. However, the canonical linear constraints of the IE and
other MP estimators have a general form that clarifies their assumptions and their
sensitivity to changes in the data

w1α− w2π + w3γ = v, (22)

where w1, w2, and w3 are weights and v is a scalar. Equation 22 is absolutely crucial
in understanding the divergent properties of MP estimators, including the IE. In
general, across MP estimators, the estimates of the linear effects vary depending
on at least three aspects of the data: first, the number of APC groups in the data
set, which alter the weights for α, π, and γ as well as the value of the scalar v;
second, the size and sign of the nonlinearities, which shifts the value of v; finally,
the choice of the reference category, which also shifts the value of v. If there are no
nonlinearities in the data set, then regardless of the MP estimator, v = 0; otherwise,
the IE and other MP estimators constrain the weighted sum of the slopes to equal
some other arbitrary value of v.

We examine the canonical linear contraints of nine MP estimators in Tables
3, 4, and 5. For all tables, we keep the number of age groups fixed at I = 3 but
vary the number of period groups (and accordingly, the number of cohort groups).
Note that in practice, the constraints in Tables 3, 4, and 5 can be simplified because
the nonlinearities are identified; that is, the right-hand side of the canonical linear
constraints reduces to a scalar when applied to any given set of data. For example,
the canonical linear constraint of the IEFirst in Table 3 simplifies to α− π + 6γ = v,
where the scalar v = −α2 + π2 − 4γ2 + 2γ3 − 2γ4.

Mathematically, the canonical linear constraints in these tables reveal that all
of the MP estimators examined, except for the OE, will produce differing linear
constraints and thus divergent estimates of the true temporal effects because of
the following: changes in the category omitted (or similarly, the reference category
used), the number of APC categories, and the size and direction of the nonlinearities.
Out of all the estimators examined, only the DEForward, DEBackward, and OE produce
estimates that will not depend on whether or not the first or last is omitted. However,
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Table 3: Canonical form of linear constraints with I = 3 and J = 3 groups.

Canonical Linear Constraint

MP
Estimator

Linear
Effects

Nonlinear
Effects

IEFirst: α− π + 6γ = −α2 + π2 − 4γ2 + 2γ3 − 2γ4

IELast: α− π + 6γ = α2 − π2 + 4γ2 + 2γ3 + 2γ4

TEFirst: α− π + 6γ = ( 3
5 )α

2 − ( 3
5 )π

2 + 4γ2 − 2γ3 + 2γ4

TELast: α− π + 6γ = −( 3
5 )α

2 + ( 3
5 )π

2 − 4γ2 − 2γ3 − 2γ4

HEBackward: α− π + ( 54
13 )γ = ( 3

13 )α
2 − ( 3

13 )π
2 + ( 22

39 )γ
2 − ( 17

78 )γ
3 + ( 5

26 )γ
4

HEForward: α− π + ( 54
13 )γ = −( 3

13 )α
2 + ( 3

13 )π
2 − ( 22

39 )γ
2 − ( 17

78 )γ
3 − ( 5

26 )γ
4

DEBackward: α− π + 2γ = −γ3

DEForward: α− π + 2γ = −γ3

OE: α− π + γ = 0

Notes: Decomposition based on I = 3 age, J = 3 period, and K = I + J − 1 = 5 cohort groups. The
transformation matrix is used to decompose original effects into linear and nonlinear components, which is
then multiplied by the original null vector. For ease of exposition, null vectors and orthogonal polynomial
contrasts with integer elements are used to calculate the linear constraints. For some parameter β, we let βk

denote the kth orthogonal polynomial term. For example, γ2 is the second-order orthogonal polynomial
term for the cohort variable.

only the OE is robust to the size and sign of the nonlinearities as well as the number
of APC categories used.

This analysis also informs us when MP estimators will appear to produce reliable
results. MP estimators will perform well when (1) there are significant nonlinearities
and there are zero or very small linear effects or (2) when the underlying true linear
effects have the same relationship among each other as that of the canonical linear
constraint. It is important to emphasize that the mathematical constraint imposed by
MP estimators, including the IE, will not, generally speaking, recover the underlying
data-generating parameters. The reason for this is that the estimates produced by
the MP and the true data-generating parameters will equal each other only if the
parameters happen to conform to the MP’s specific mathematical constraint. We
know of no reason why this should ever be the case in any particular substantive
application.

Examples

We now turn to several simulations to supplement the mathematical discussion of
the previous section. We first compare the various MP estimators when applied
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Table 4: Canonical form of linear constraints with I = 3 and J = 4 groups.

Canonical Linear Constraint

MP
Estimator

Linear
Effects

Nonlinear
Effects

IEFirst: α− ( 11
2 )π + ( 45

2 )γ = −α2 + ( 3
2 )π

2 − ( 3
2 )π

3 − ( 25
2 )γ2 + ( 25

2 )γ3 − ( 5
2 )γ

4 + ( 5
2 )γ

5

IELast: α− ( 11
2 )π + ( 45

2 )γ = α2 − ( 3
2 )π

2 − ( 3
2 )π

3 + ( 25
2 )γ2 + ( 25

2 )γ3 + ( 5
2 )γ

4 + ( 5
2 )γ

5

TEFirst: α− ( 28
5 )π + 22γ = ( 3

5 )α
2 − ( 6

5 )π
2 + ( 6

5 )π
3 + 15γ2 − 15γ3 + 3γ4 − 3γ5

TELast: α− ( 28
5 )π + 22γ = −( 3

5 )α
2 + ( 6

5 )π
2 + ( 6

5 )π
3 − 15γ2 − 15γ3 − 3γ4 − 3γ5

HEBackward: α− ( 58
13 )π + ( 180

13 )γ = ( 3
13 )α

2 − ( 10
39 )π

2 + ( 8
39 )π

3 + ( 20
13 )γ

2 − ( 15
13 )γ

3 + ( 1
5 )γ

4 − ( 12
65 )γ

5

HEForward: α− ( 58
13 )π + ( 180

13 )γ = −( 3
13 )α

2 + ( 10
39 )π

2 + ( 8
39 )π

3 − ( 20
13 )γ

2 − ( 15
13 )γ

3 − ( 1
5 )γ

4 − ( 12
65 )γ

5

DEBackward: α− 3π + 5γ = π3 − 5γ3 − γ5

DEForward: α− 3π + 5γ = π3 − 5γ3 − γ5

OE: α− π + γ = 0

Notes: Decomposition based on I = 3 age, J = 5 period, and K = I + J − 1 = 7 cohort groups. The transformation
matrix is used to decompose original effects into linear and nonlinear components, which is then multiplied by the
original null vector. For some parameter β, we let βk denote the kth orthogonal polynomial term. For example, γ2 is the
second-order orthogonal polynomial term for the cohort variable.

to a set of simulated data. These results are shown in Table 6. For simplicity, and
without loss of generality, we assume there is no random error. The results show
that for all MP estimators examined, they only differ in their linear components;
the IE and related MP estimators all recover the intercept and the nonlinear effects.
Note that none of the the estimators recover the true linear effects.23

The results in Table 6 raise an important issue regarding the use of fit statistics
to determine whether or not an MP estimator should be used, as recommended by
Land and colleagues (e.g., Yang and Land 2013a: 125–53; Yang and Land 2013b).
They contend that a researcher should adopt a three-step procedure when consider-
ing using the IE. In the first step, the researcher conducts a descriptive analysis of the
temporal effects using graphical techniques. In the second step, the researcher uses
fit statistics to determine whether or not "the data are sufficiently well described by
any single factor or two-way combination" of age, period, and cohort (Yang and
Land 2013a: 126). If graphical techniques and model fitting suggest that "only one
or two of the three effects are operative," then the researcher "can proceed with a
reduced model that omits one or two groups of variables" because then "there is no
identification problem" (Yang and Land 2013a: 126; Yang and Land 2013b: 1969).
However, if these analyses suggest that "all three dimensions are at work," then one
should proceed to step three and implement the IE (Yang and Land 2013a: 126).
They emphasize that the IE should not be used unless "all three dimensions are
operative" (Yang and Land 2013b: 1969).
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Table 6: Comparison of MP estimators: nonlinear and linear effects.

µ α α2 π π2 γ γ2 γ3 γ4

True Effects: 1.000 1.000 0.250 2.000 0.050 −1.000 −0.250 0.200 −0.100
IEFirst: 1.000 2.050 0.250 0.950 0.050 0.050 −0.250 0.200 −0.100
IELast: 1.000 1.800 0.250 1.200 0.050 −0.200 −0.250 0.200 −0.100
TEFirst: 1.000 1.690 0.250 1.310 0.050 −0.310 −0.250 0.200 −0.100
TELast: 1.000 1.960 0.250 1.040 0.050 −0.040 −0.250 0.200 −0.100
HEBackward: 1.000 1.812 0.250 1.188 0.050 −0.188 −0.250 0.200 −0.100
HEForward: 1.000 1.849 0.250 1.151 0.050 −0.151 −0.250 0.200 −0.100
DEBackward: 1.000 1.700 0.250 1.300 0.050 −0.300 −0.250 0.200 −0.100
DEForward: 1.000 1.700 0.250 1.300 0.050 −0.300 −0.250 0.200 −0.100
OE: 1.000 1.667 0.250 1.333 0.050 −0.333 −0.250 0.200 −0.100

Notes: Number of age and period groups is set at I = 3 and J = 3, respectively, for all simulations. Sample
size for each simulation is n = 100 × (I × J). Shaded columns indicate estimates of the intercept and
nonlinearities, both of which are identified for all estimators. For simplicity, and without loss of generality,
we assume no random error.

Unfortunately, it is impossible to determine from the data alone whether or
not all three temporal variables are operating. Believing otherwise can seriously
mislead researchers. For example, consider the models in Table 7. The underlying
data-generating process consists of nonzero slopes for all three temporal variables:
α = 0.500, π = 1.500, and γ = 2.000. However, whereas the age and period
variables have nonzero nonlinear effects in the data-generating process, all of the
cohort nonlinearities are zero. Land and colleagues argue that one should use
a reduced model when it fits the data equally well or better than a full model
with all three temporal variables (Yang and Land 2013a: 109). The fit statistics in
Table 7 suggest that one should, according to Land and colleagues, fit a two-factor
age–period (AP) model rather than a three-factor APC model. However, by doing
so, one does not avoid the nonidentifiability of the three linear effects. Rather, by
fitting the two-factor model with only age and period effects, one is imposing the
identification assumption that the cohort linear effect is zero even though its true
linear effect is γ = 2.000. This zero-linear trend constraint on the cohort variable
is external to the data, imposed by the researcher. Depending on the substantive
application, it may or may not be reasonable to assume that because the nonlinear
effects of cohort are observed to be zero, its linear effect is also zero. However, this
is an assumption that can only be justified by appealing to theory or the inclusion
of additional data.

We now compare two estimators in particular: the IE with the last category
omitted (the most widely used of the MP estimators) and the OE (which, as we have
shown mathematically, is robust to the number of APC categories, the use of the
reference group, as well as the size and direction of the nonlinearities). The general
canonical linear constraint of the previous section tells us that mathematically, the
IELast is sensitive to the number of APC groups. Table 8 shows how the IELast’s
estimates of the slopes change as the number of period groups increases from J = 3
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Table 7: Estimates and goodness-of-fit statistics for IELast and two-factor models.

Parameter APC AP AC PC

µ 0.984 0.988 1.375 0.328
α1 − ᾱ −0.543 0.114 −7.272
α2 − ᾱ 2.780 3.130 −0.103
α3 − ᾱ 2.038 2.048 2.459
α4 − ᾱ 1.302 0.942 4.467

π1 − π̄ −5.416 −6.072 −2.498
π2 − π̄ −1.853 −2.213 −1.058
π3 − π̄ −2.943 −2.933 −3.480
π4 − π̄ 1.555 1.905 0.116
γ1 − γ̄ −1.213 −13.045 −9.053
γ2 − γ̄ −1.059 −9.680 −4.397
γ3 − γ̄ −0.688 −7.687 −1.836
γ4 − γ̄ −0.343 −4.580 0.014
γ5 − γ̄ 0.042 −0.349 0.698
γ6 − γ̄ 0.265 2.735 3.045
γ7 − γ̄ 0.794 5.890 4.113
γ8 − γ̄ 1.011 10.532 4.374

R2 0.812 0.812 0.744 0.705
Adjusted R2 0.812 0.812 0.744 0.705

AIC 125963 125958 133678 137189
BIC 126109 126040 133792 137303

Notes: Based on simulated data with I = 5 age groups, J = 5 period groups, and I + J − 1 = K = 9 cohort
groups. Sample size is N = 25,000. Data-generating parameters are µ = 1.000, α = 0.500, α2 = −1.450,
α3 = −0.200, α4 = −0.150, π = 1.500, π2 = 0.900, π3 = 0.700, π4 = −0.200, and γ = 2.000. Data-generating
model includes disturbances drawn from a normal distribution with a mean of zero and standard deviation
of 3.000. Zero-sum effect coding with the last category omitted is used for the two-factor AP (age–period),
AC (age–cohort), and PC (period–cohort) models. Three-factor age–period–cohort (APC) model is estimated
using IELast. Shaded column indicates model with lowest AIC and BIC scores.

to J = 1000.24 For all simulations in Table 8, we keep the data-generating process
the same with α = −2.000, π = 4.000, and γ = 1.000. For simplicity, we keep the
number of age groups constant at I = 3 as we increase the number of period groups
(and accordingly, the number of cohorts). A different number of age groups does
not alter our findings regarding the sensitivity of the IELast to the number of APC
groups. We purposely constructed the data-generating process so that it initially
conforms to the IE’s constraint. With I = 3 age groups and J = 3 period groups, as
well as no nonlinearities, w1 = 1, w2 = 1, w3 = 6, and v = 0. We purposely chose
values of α, π, and γ so that α− π + 6γ = −2− (4) + 6(1) = 0. This is indicated in
the first row of Table 8, which is shaded.
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Table 8: Sensitivity of the IELast to number of period (and cohort) groups.

J Groups αIE πIE γIE Canonical Linear Constraint

3 −2.000 4.000 1.000 α− π + 6γ = 0

5 −1.731 3.731 1.269 α− 6π + 19γ = 0

8 −1.368 3.368 1.632 α−
( 119

4
)
π +

( 249
4
)
γ = 0

10 −1.214 3.214 1.786 α−
( 249

4
)
π +

( 451
4
)
γ = 0

15 −0.990 2.990 2.010 α− 231π + 344γ = 0

25 −0.798 2.798 2.202 α− 1156π + 1469γ = 0

50 −0.650 2.650 2.350 α−
( 39,249

4
)
π +

( 44,251
4
)
γ = 0

100 −0.575 2.575 2.425 α−
( 323,499

4
)
π +

( 343,501
4
)
γ = 0

500 −0.515 2.515 2.485 α− (10, 354, 375)π + (10, 479, 375)γ = 0

1000 −0.507 2.507 2.493 α− (83, 083, 750)π + (83, 583, 750)γ = 0

True Linear
Effects α = −2.000 π = 4.000 γ = 1.000

Notes: Number of age groups is set at I = 3 for all simulations. Sample size for each simulation is
n = 100× (I × J). Shaded row indicates initial simulated data in which, by construction, the IE constraint is
satisfied. Due to rounding, some IE constraints displayed here will not equal zero exactly.

As we increase the number of period groups, the values of the weights change,
thereby altering the IELast’s canonical linear constraint. The canonical linear con-
straints are shown in last column of Table 8. Because the data-generating process
contains no nonlinearities and remains the same as we increase the number of
groups, the value of v for each constraint is zero. However, the values of the w’s
for the period and cohort slopes increase as we increase the number of period (and
cohort) groups.25 Although our initial data set satisfies the IELast’s canonical linear
constraint, as the number of period groups increases, the IELast estimates diverge
dramatically from the true data-generating parameters. In this particular case, as
we increase the number of period groups, the IELast’s estimates of the age slope
increases, the period slope decreases, and the cohort slope increases. The reason is
that as the number of period and cohort groups increase, their values of w become
very similar. With J = 1000 period groups, the weights for the period and cohort
slopes are approximately the same. Thus, the claim that the IE’s constraint on the
true, unknown slopes is consistent as the number of time periods increases towards
infinity is not generally true (Fu 2016).

The last column of Table 8 underscores the complicated, nonintuitive, and
highly variable nature of the IELast’s canonical linear constraint as well as the
extreme difficulty of interpreting it substantively. For example, with J = 10 groups,
the constraint in Table 8 is α −

( 249
4
)
π +

( 451
4
)
γ = 0, with weights of w1 = 1,

w2 =
( 249

4
)
, and w3 =

( 451
4
)
. However, with J = 15 groups, the IE constraint

becomes α− 231π + 344γ, with weights of w1 = 1, w2 = 231, and w3 = 344. It is
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Table 9: Robustness of the OE to number of period (and cohort) groups.

J Groups αOE πOE γOE Canonical Linear Constraint

3 −2.000 1.000 3.000 α− π + γ = 0

5 −2.000 1.000 3.000 α− π + γ = 0

8 −2.000 1.000 3.000 α− π + γ = 0

10 −2.000 1.000 3.000 α− π + γ = 0

15 −2.000 1.000 3.000 α− π + γ = 0

25 −2.000 1.000 3.000 α− π + γ = 0

50 −2.000 1.000 3.000 α− π + γ = 0

100 −2.000 1.000 3.000 α− π + γ = 0

500 −2.000 1.000 3.000 α− π + γ = 0

1000 −2.000 1.000 3.000 α− π + γ = 0

True Linear Effects α = −2.000 π = 1.000 γ = 3.000

Notes: Number of age groups is set at I = 3 for all simulations. Sample size for each simulation is
n = 100× (I × J). Shaded row indicates initial simulated data in which, by construction, the OE constraint
is satisfied.

exceedingly difficult, if not impossible, to muster a reason why these specific values
of w have any theoretical importance. In contrast, as shown in Table 9, regardless of
the number of groups, the OE’s canonical linear constraint is α− π + γ = 0.

The canonical linear constraint also clarifies that the IELast’s estimates depend
on the size (e.g., large or small in absolute value) and sign (e.g., positive or negative)
of the nonlinearities. For example, using the same data-generating slopes as in
the previous section, Table 10 shows how the IELast’s estimates alter depending
on the magnitude and direction of the age nonlinearity. For all simulations, we
keep the number of age and period groups at I = 3 and J = 3, respectively. Again,
because we specifically constructed a data-generating process that conforms to
the IE constraint when there are I = 3 age groups and J = 3 period groups as
well as zero nonlinearities, the IELast indeed recovers the true slopes when the age
nonlinearity is zero. This row is shaded in Table 10.

Because the number of age groups is set at I = 3 for all simulations in Table 10,
the age weight is set at w1 = 1, and the value of v changes directly with the age
nonlinearity. As the age nonlinearity becomes more positive, the age and cohort
slopes move towards positive infinity on the real number line, whereas the period
slope moves towards negative infinity. In contrast, as the age nonlinearity becomes
more negative, the age and cohort slopes move towards negative infinity on the
real number line, whereas the period slope moves towards positive infinity. For the
same underlying age, period, and cohort linear effects in the population, the IELast
will give radically different estimates of the slopes depending on the nonlinear
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Table 10: Sensitivity of the IELast to age nonlinearities.

α2 αIE πIE γIE Canonical Linear Constraint

−20.000 −4.500 6.500 −1.500 α− π + 6γ = −20.000

−10.000 −3.250 5.250 −0.250 α− π + 6γ = −10.000

−5.000 −2.625 4.625 0.375 α− π + 6γ = −5.000

−1.000 −2.125 4.125 0.875 α− π + 6γ = −1.000

−0.500 −2.062 4.062 0.938 α− π + 6γ = −0.500

−0.250 −2.031 4.031 0.969 α− π + 6γ = −0.250

−0.050 −2.006 4.006 0.994 α− π + 6γ = −0.050

0.000 −2.000 4.000 1.000 α− π + 6γ = 0.000

0.050 −1.994 3.994 1.006 α− π + 6γ = +0.050

0.250 −1.969 3.969 1.031 α− π + 6γ = +0.250

0.500 −1.938 3.938 1.063 α− π + 6γ = +0.500

1.000 −1.875 3.875 1.125 α− π + 6γ = +1.000

5.000 −1.375 3.375 1.625 α− π + 6γ = +5.000

10.000 −1.075 2.750 2.250 α− π + 6γ = +10.000

20.000 0.500 1.500 3.500 α− π + 6γ = +20.000

True Linear Effects α = −2.000 π = 4.000 γ = 1.000

Notes: For all simulations, number of age, period, and cohort groups is set at I = 3, J = 3, and K =

I + J − 1 = 5, respectively. Sample size for each simulation is n = 1,000 ×(I × J) = 9,000. Shaded row
indicates simulated data in which, by construction, the IE constraint is satisfied.

effects. This is in contrast to the OE, which (as shown in 11) provides the same
constraint regardless of the nonlinearity of age.

The last column of Table 10 again brings to light the complex and variable nature
of the IELast’s constraint, even in canonical form. For instance, with α2 = −1.000, the
constraint in Table 10 is α− π + 6γ = −1.000, but with α2 = +1.000, the constraint
becomes α− π + 6γ = +1.000. Again, it is very difficult, if not impossible, to give a
theoretical reason why this particular linear combination of the temporal slopes in
the population should equal v = +1.000 rather than v = −1.000 simply because the
quadratic age trend is a positive one rather than a negative one. In contrast, the OE
imposes the same linear constraint regardless of the magnitude or direction of the
nonlinearities. As demonstrated in Table 11, the OE’s canonical linear constraint is
always α− π + γ = 0 despite changes in the size or sign of the age-squared effect.
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Table 11: Robustness of the OE to age nonlinearities.

α2 αOE πOE γOE Canonical Linear Constraint

−20.000 −2.000 1.000 3.000 α− π + γ = 0

−10.000 −2.000 1.000 3.000 α− π + γ = 0

−5.000 −2.000 1.000 3.000 α− π + γ = 0

−1.000 −2.000 1.000 3.000 α− π + γ = 0

−0.500 −2.000 1.000 3.000 α− π + γ = 0

−0.250 −2.000 1.000 3.000 α− π + γ = 0

−0.050 −2.000 1.000 3.000 α− π + γ = 0

0.000 −2.000 1.000 3.000 α− π + γ = 0

0.050 −2.000 1.000 3.000 α− π + γ = 0

0.250 −2.000 1.000 3.000 α− π + γ = 0

0.500 −2.000 1.000 3.000 α− π + γ = 0

1.000 −2.000 1.000 3.000 α− π + γ = 0

5.000 −2.000 1.000 3.000 α− π + γ = 0

10.000 −2.000 1.000 3.000 α− π + γ = 0

20.000 −2.000 1.000 3.000 α− π + γ = 0

True Linear Effects α = −2.000 π = 1.000 γ = 3.000

Notes: For all simulations, number of age, period, and cohort groups is set at I = 3, J = 3, and K =

I + J − 1 = 5, respectively. Sample size for each simulation is n = 1,000 ×(I × J) = 9,000. Shaded row
indicates simulated data in which, by construction, the OE constraint is satisfied.

Conclusion

This article makes a number of important conclusions not recognized or fully
appreciated in the current APC literature. First, we compare the similarities and
differences of MP estimators, clarifying that although all MP estimators share the
same desirable statistical properties, they diverge in a decisive way: because they
are based on varying design matrices, they impose differing linear constraints on
the true, unknown temporal effects. Second, we show how to explicitly construct
a transformation matrix that allows one to convert any APC design matrix in
canonical form with the linear and nonlinear components orthogonally separated.
Third, using this transformation matrix and canonical form of the design matrix,
we then prove that all constrained estimators, including MP estimators, generate
the same set of nonlinear effects but differing linear effects. Moreover, we show
that the solution line of any APC data set can always be simplified to a canonical
form that spans just three dimensions. Fourth, we show mathematically that the
IE and related MP estimators have a general canonical linear constraint, parallel
to the fundamental linear dependency among the time scales, such that w1α −
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w2π + w3γ = v, where the w’s are weights and v is a scalar. To our knowledge, this
is the first analysis to reveal this general canonical linear constraint and use it to
compare multiple MP estimators. Finally, we show, both mathematically and using
simulations, that the IE and a number of other MP estimators produce varying
canonical linear constraints depending on the size and sign of the nonlinear effects,
the number of APC categories, and the choice of reference category. However, two
MP estimators, the OE and DE, are both easier to interpret and more robust than
the IE. In particular, we find that the OE’s constraint can always be expressed as
α− π + γ = 0.

We now conclude by offering a set of practical guidelines for APC researchers.
In general, we do not recommend using MP estimators, including the IE, in an
attempt to recover the true APC effects. However, if a researcher chooses to use
an MP estimator, including the IE, then we have several recommendations. First,
regardless of the MP estimator one uses, the full set of linear and nonlinear effects
should be reported. This will allow the researcher to evaluate the legitimacy of the
constraint imposed on the true, unknown linear APC effects. Fit statistics should
be used judiciously, with full appreciation that they cannot discern whether or not
two or three linear effects are operating in any particular data set. Ultimately, any
linear constraint should be grounded in an underlying social, cultural, or biological
theory.

Second, if using an MP estimator, then we recommend using the OE. The OE’s
linear constraint on the true temporal effects does not vary based on changes in
the design matrix, such as the number of period groups or the size and sign of the
nonlinearities. Moreover, the OE has the minimum sampling variance with respect
to the canonical solution line spanning three dimensions and has the null vector
with the smallest number of nonzero elements. In this way, the OE is the most
parsimonious representation of the linear dependency inherent in any APC data
set.

Finally, we caution that researchers who use the IE or related MP estimators in
the hopes of uncovering the true data-generating parameters are unlikely to attain
their goal. If using the IE, one should state explicitly why it is reasonable to assume
that the model parameters in the population have the same linearly dependent
relationship among each other as their corresponding columns in the design matrix.
In general, we suspect that this constraint will be difficult, if not impossible, to
justify. At this point, it is unclear what type of logic would be used to connect a set
of theoretical considerations to a set of assumptions about the linear dependency in
the design matrix. To emphasize, there is, to our knowledge, no social, biological,
or cultural theory that claims that the true, unknown APC effects must conform to
some specific linear dependence in the data.

Although we think that the OE is preferable to the IE, this in no way implies
that it is preferable to other approaches to analyzing APC data. In general, one can
divide the set of methods for identifying APC effects into statistical and theoretical
approaches. The strength of a statistical approach, such as the OE or IE, is that it is
not based on any explicit theoretical or substantive assumptions that researchers
may strongly disagree about. The weakness of a statistical approach is that there is,
in general, no reason to believe that it estimates the true parameters for the model
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that generated the data. A variety of theoretically based strategies for identifying
APC effects are possible. For example, one could assume, using social, biological, or
cultural theory, that the linear effect of the age, period, or cohort variables is positive
or negative. As Fosse and Winship (2018) show, this can be used to bound estimates
of the data-generating parameters, in some cases leading to quite narrow bounds
despite weak assumptions. An alternative theoretical approach entails specifying
the mechanisms through which age, period, and cohort impact the outcome. As
Winship and Harding (2008) demonstrate, if one has variables measuring all the
pathways through which at least one of the age, period, or cohort variables operate,
then it is possible to identify the underlying data-generating parameters. To be
sure, an appreciable issue with any theoretical approach is that researchers may
well disagree on the validity of particular assumptions. Although this can be a
serious problem, at least when there is disagreement, it will be clear why different
approaches lead to different estimates.

Ultimately, a theoretical approach is to be preferred to a purely statistical one.
In most cases, researchers are interested in the true but unknown APC effects. We
appreciate that others see more value in a statistical approach. Nonetheless, if one
is going to use a statistical approach to identification, there is merit in using an
estimator, such as the OE, that provides separate estimates of the nonidentified
linear and identified nonlinear parameters. As we have demonstrated, doing so
produces estimates of the linear effects that are not affected by the number of
periods and cohorts available to the researcher, the choice of reference category, or
the size and sign of the nonlinear effects.

Notes

1 Following the convention in the APC literature, we use the term "effects" when referring
to age, period, and cohort processes (e.g., Glenn 1981: 249; Fienberg and Mason 1979:
133; Mason et al. 1973: 243; O’Brien 2015: 1; Yang and Land 2013a: 1–2). These "effects"
need not refer to causal effects in the sense of parameters associated with well-defined
potential outcomes (Morgan and Winship 2014: 37–76).

2 For our purposes here, we focus on MP estimators based on contrast coding schemes
commonly discussed in the applied statistics literature (e.g., Fox 2002: 126–30; Onyiah
2008: 121–36,148–61; Venables and Ripley 2013: 146–9), in addition to those examined in
the methodological literature on APC effects in sociology and demography (e.g., Luo
et al. 2016; O’Brien 2015: 55–57; Pelzer et al. 2014).

3 As Land and colleagues (Land et al. 2016: 964) have asserted, "only the sum-to-zero
[effect] coding is used to define and estimate the IE." However, as we discuss later, this
definition differs form that of Fu (2016).

4 In the context of the present article, a set of parameters are identifiable if there is an
estimator that would produce the true, underlying data-generating parameters on a
sample of infinite size. In contrast, estimability implies that an estimator gives some
unique value whether or not the estimate is equal to the true, underlying data-generating
parameters. Thus, identification implies estimability, but estimability does not imply
identification. For a succinct but clear discussion on defining identifiability and estima-
bility, see Greenland (2005).
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5 For the purposes of this article, by "norm," we refer to the Euclidean or, equivalently, L2
norm.

6 For simplicity, we also assume that the age and period categories are of equal width.

7 Note that I is added to j− i so that the cohort index begins at k = 1. This ensures that,
for example, i = j = k = 1 refers to the first group for all three temporal scales. One
could just as easily index the cohorts using k = j− i, but this identity would be lost.

8 Without loss of generality, in the discussion that follows, we assume that there are no
disturbances such that ε = 0.

9 Because Xsv = XTXsv = 0, we know that XTy = XTXb* + XTXsv. Rearranging, we
can thus write XTy = XTX(b* + sv). Because XTXb = XTX(b* + sv), it follows that
b = b* + sv.

10 The fact that X+y = bOLS if X is of full rank may look odd to some readers, but this can
be demonstrated algebraically. The first and third conditions imply that XTXX+ = XT .
Substituting b = X+y into the normal equations XTXb = XTy, we obtain XTXX+y =

XTy. If X is of full rank, then we can take the regular inverse to solve for X+y, which
results in X+y = (XTX)−1XTy = bOLS.

11 There are other possible design matrices that are deficient by more than rank one. These
would be matrices that do not provide a full representation of the linear and nonlinear
effects of age, period, and cohort. For our purposes here, such matrices are not of concern.

12 A similar decomposition exists for the design matrix X in which the eigenvalues will be
the square roots of the diagonal values of Λ. It thus also has a zero eigenvalue, and it
will have the same null vector as XTX.

13 For any particular constrained set of estimates b*, an MP estimator minimizes the
Euclidean length of b* + sv or, equivalently, its squared length (b* + sv)T(b* + sv). Using
calculus, it can be shown that this squared length is at its minimum when s = −vTb*.

14 The normalized null vector is given by v̂ = v
‖v‖2

= v
(vTv)1/2 , where the double bars (

‖.‖2 ) denote the Euclidean norm (or length) of the vector and the caret ( .̂ ) indicates
normalization. The caret notation, which is commonly used in the mathematics literature
to denote a normalized vector, should not be confused with the predicted values of a
statistical model. The normalized null vector is like v except that it has the additional
property that its Euclidean length is one, such that v̂T v̂ = 1. Because v̂ and v differ only
by multiplication by a scalar, for ease of exposition, we will refer to v unless necessary
for computational purposes.

15 Combining these two stages, in the limit, we can write any given MP estimator as
minimize ‖Xb− y‖2

2 + λ2‖b‖2
2, where λ is a regularization parameter and λ → 0 (cf.

Fu 2016: 185). As λ approaches zero, both the MP and ridge (or Tikhonov) regression
solutions converge to that set of estimates with the smallest Euclidean norm.

16 Formally, an MP estimator is that set of estimates that minimizes the sum of the squared
parameter estimates, or (b + sv)T(b + sv), for a particular design matrix. This is the
mathematical function that an MP estimator applies to obtain a set of estimates.

17 A crucial point of confusion is that stating a function is unbiased does not mean that it is
an unbiased function for some specific property of the population. To clarify this point,
consider the following simple example. The function five times the mean of a variable
is an unbiased estimator. If we were to calculate it over an infinite number of samples
and take its average, it will equal five times the mean in the population. Formally, this is
because five times the mean is a linear function. Obviously, five times the mean is not an
unbiased estimator for the mean in the population itself. The fact that MP estimators are
unbiased (meaning that for any particular MP estimator, its average across an infinite
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number of samples is equal to its value calculated in the population) does not indicate
that it produces an unbiased estimate of the parameters of the underlying model that
generated the data (that is, the true, unknown temporal effects).

18 This can be further revealed by simply examining the various proofs showing that the IE
has these properties and noting that none depend on using a zero-sum, effects-coded
design matrix (for example, see Fu 2000: 263–8,276–7; Yang et al. 2004: 107–8; Yang and
Land 2013a: 75–123).

19 Recall that a linear combination is any mathematical expression that entails adding a set
of terms each multiplied by a constant, where the constant can include one. For example,
the well-known relationship between temperature in degrees Fahrenheit (F) and Celsius
(C) is a linear combination: F = C× 9

5 + 32. When we convert from degrees Celsius to
Fahrenheit, we are not changing the temperature; rather, we are simply recentering (by
adding 32) and rescaling (by multiplying by 9

5 ) the distribution of the temperature in
degrees Celsius. Crucially, once we know the temperature in degrees Celsius, we know
the temperature in Fahrenheit because it is a simple linear combination. In a similar
way, regardless of the coding scheme for a set of APC data, we can express at least one
variable as a linear relationship of the other variables.

20 Note that the nonzero null vector elements correspond to the columns of a design matrix
that are not identified.

21 Yang and colleagues (Yang et al. 2008: 1703) state that the "conventional wisdom is that
only the nonlinear, but not the linear, components of APC models can be estimable. . .
however, there have been only numeric demonstrations, but no rigorous proofs, to
support the idea that no estimable function exists." Although the linear trends are not
individually identifiable, there are "estimable functions" in the sense that particular linear
combinations of the linear trends are identifiable.

22 For simplicity of exposition, we have expressed the null vectors in unnormalized form.

23 From our experience, it is a very simple matter to set up a data-generating process with
linear effects that are not identified using the IE or other MP estimators. This is not
surprising because for any given constrained estimator, there is just one point on the
solution line corresponding to its linear constraint. To put it another way, there is just
one way the IE or other MP estimator can recover the true slopes for a given solution
line, whereas there are vastly many more ways for it to fail to do so.

24 This reflects the fact that in actual studies conducted over time, the number of age groups
are constant due to the limits of human lifespan, but the number of period (and cohort)
groups will increase.

25 The weight for the age slope would similarly increase if we increased the number of age
groups across the simulations.
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